Graphical Gaussian Process Models for Highly Multivariate Spatial Data.

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2022-12-01 DOI:10.1093/biomet/asab061
Debangan Dey, Abhirup Datta, Sudipto Banerjee
{"title":"Graphical Gaussian Process Models for Highly Multivariate Spatial Data.","authors":"Debangan Dey,&nbsp;Abhirup Datta,&nbsp;Sudipto Banerjee","doi":"10.1093/biomet/asab061","DOIUrl":null,"url":null,"abstract":"<p><p>For multivariate spatial Gaussian process (GP) models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence among the variables. This is undesirable, especially for highly multivariate settings, where popular cross-covariance functions such as the multivariate Matérn suffer from a \"curse of dimensionality\" as the number of parameters and floating point operations scale up in quadratic and cubic order, respectively, in the number of variables. We propose a class of multivariate \"Graphical Gaussian Processes\" using a general construction called \"stitching\" that crafts cross-covariance functions from graphs and ensures process-level conditional independence among variables. For the Matérn family of functions, stitching yields a multivariate GP whose univariate components are Matérn GPs, and conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Matérn GP to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"109 4","pages":"993-1014"},"PeriodicalIF":2.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838617/pdf/nihms-1786615.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asab061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 17

Abstract

For multivariate spatial Gaussian process (GP) models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence among the variables. This is undesirable, especially for highly multivariate settings, where popular cross-covariance functions such as the multivariate Matérn suffer from a "curse of dimensionality" as the number of parameters and floating point operations scale up in quadratic and cubic order, respectively, in the number of variables. We propose a class of multivariate "Graphical Gaussian Processes" using a general construction called "stitching" that crafts cross-covariance functions from graphs and ensures process-level conditional independence among variables. For the Matérn family of functions, stitching yields a multivariate GP whose univariate components are Matérn GPs, and conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Matérn GP to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling.

高多元空间数据的图形高斯过程模型。
对于多元空间高斯过程(GP)模型,传统的交叉协方差函数规范没有利用关系变量间图来确保变量之间的过程级条件独立性。这是不可取的,特别是对于高度多元的设置,其中流行的交叉协方差函数(如多元mat n)遭受“维数诅咒”,因为参数和浮点运算的数量分别以二次和三次顺序在变量数量上按比例增加。我们提出了一类多变量“图形高斯过程”,使用称为“拼接”的一般构造,从图中制作交叉协方差函数,并确保变量之间的过程级条件独立性。对于mat2013.2013.10函数族,拼接产生一个多变量GP,其单变量分量为mat2013.2013.10 GP,并且符合图形模型指定的过程级条件独立性。对于高度多元的设置和可分解的图形模型,拼接提供了大量的计算增益和参数维数减少。我们通过模拟实例和空气污染建模的应用,演示了图形化mat rn GP对高度多元空间数据联合建模的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信