{"title":"Analysis of energy consumption for lump coal degradation in melting gasifier","authors":"Qi-hang Liu, Xiao-ming Li, Jun-xue Zhao","doi":"10.1016/S1006-706X(17)30116-4","DOIUrl":null,"url":null,"abstract":"<div><p>The volume hypothesis, a theory about the energy scale of comminution, was adopted to analyze the degradation behavior of lump coal under different heating time. The breakage energy of chars was determined by a compression test, and the results show that the ultimate strength of chars decreased at the early stage during the heating process, resulting in a decrease of the char breakage energy. At the late stage during the heating process, the char breakage energy increased with the increase of heating time. The power consumption coefficients <em>C</em><sub>K</sub> of different chars were determined by a drum experiment, and then the char degradation behavior under different power consumptions was predicted. In addition, a gasification experiment was conducted to determine the gasification activation energy (with CO<sub>2</sub>) of lump coal heated for different time. The results show that the gasification activation energy increased greatly at the early stage during the heating process, which showed opposite change to the breakage energy of chars. Furthermore, the internal temperature and heat changes of the bonded coal briquette were calculated by using an unsteady heat conduction equation. The large difference between the surface and the center temperatures of coal and the large amount of heat absorption at the early stage during the heating process may have a negative effect on the breakage energy of chars.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":"24 8","pages":"Pages 770-777"},"PeriodicalIF":3.1000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30116-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X17301164","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
The volume hypothesis, a theory about the energy scale of comminution, was adopted to analyze the degradation behavior of lump coal under different heating time. The breakage energy of chars was determined by a compression test, and the results show that the ultimate strength of chars decreased at the early stage during the heating process, resulting in a decrease of the char breakage energy. At the late stage during the heating process, the char breakage energy increased with the increase of heating time. The power consumption coefficients CK of different chars were determined by a drum experiment, and then the char degradation behavior under different power consumptions was predicted. In addition, a gasification experiment was conducted to determine the gasification activation energy (with CO2) of lump coal heated for different time. The results show that the gasification activation energy increased greatly at the early stage during the heating process, which showed opposite change to the breakage energy of chars. Furthermore, the internal temperature and heat changes of the bonded coal briquette were calculated by using an unsteady heat conduction equation. The large difference between the surface and the center temperatures of coal and the large amount of heat absorption at the early stage during the heating process may have a negative effect on the breakage energy of chars.