{"title":"Artificial Intelligence Technologies for Teaching and Learning in Higher Education","authors":"Qi Chang, Xiajie Pan, N. Manikandan, S. Ramesh","doi":"10.1142/s021853932240006x","DOIUrl":null,"url":null,"abstract":"The term “Artificial Intelligence” (AI) refers to the simulation of human intelligence on a computer. Higher education can benefit from AI because it is a computationally efficient paradigm. Learning adapted to the changing demands of students is one of the key educational advantages of AI. Students can modify the pace of a course to better competency. Poor faculty and teaching quality and a general lack of motivation and interest among students are among the difficulties facing higher education. An artificial intelligence-assisted integrated teaching–learning framework (AL-ITLF) for higher education is proposed in this research. Multiple tutoring services are also involved in the curriculum, which is skill-based. The extreme learning machine (ELM) technique evaluates designs integrated into the suitable student monitoring model weighted score (WS) and exam results. An educational model that is more efficient, adaptable, and effective than current traditional education has been developed due to AI research in higher education. Higher education’s use of AI has resulted in a more efficient, adaptive, and effective educational model than traditional schooling. High accuracy, higher performance, lower processing costs, and a high prediction and low error rate are advantages of the suggested AI-ITLF approach. The WS and exam results were evaluated using an ELM algorithm as part of a proper student monitoring model.","PeriodicalId":45573,"journal":{"name":"International Journal of Reliability Quality and Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability Quality and Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021853932240006x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The term “Artificial Intelligence” (AI) refers to the simulation of human intelligence on a computer. Higher education can benefit from AI because it is a computationally efficient paradigm. Learning adapted to the changing demands of students is one of the key educational advantages of AI. Students can modify the pace of a course to better competency. Poor faculty and teaching quality and a general lack of motivation and interest among students are among the difficulties facing higher education. An artificial intelligence-assisted integrated teaching–learning framework (AL-ITLF) for higher education is proposed in this research. Multiple tutoring services are also involved in the curriculum, which is skill-based. The extreme learning machine (ELM) technique evaluates designs integrated into the suitable student monitoring model weighted score (WS) and exam results. An educational model that is more efficient, adaptable, and effective than current traditional education has been developed due to AI research in higher education. Higher education’s use of AI has resulted in a more efficient, adaptive, and effective educational model than traditional schooling. High accuracy, higher performance, lower processing costs, and a high prediction and low error rate are advantages of the suggested AI-ITLF approach. The WS and exam results were evaluated using an ELM algorithm as part of a proper student monitoring model.
期刊介绍:
IJRQSE is a refereed journal focusing on both the theoretical and practical aspects of reliability, quality, and safety in engineering. The journal is intended to cover a broad spectrum of issues in manufacturing, computing, software, aerospace, control, nuclear systems, power systems, communication systems, and electronics. Papers are sought in the theoretical domain as well as in such practical fields as industry and laboratory research. The journal is published quarterly, March, June, September and December. It is intended to bridge the gap between the theoretical experts and practitioners in the academic, scientific, government, and business communities.