Optimal causal control of wave energy converters in stochastic waves – Accommodating nonlinear dynamic and loss models

Rudy Nie , Jeff Scruggs , Allan Chertok , Darragh Clabby , Mirko Previsic , Anantha Karthikeyan
{"title":"Optimal causal control of wave energy converters in stochastic waves – Accommodating nonlinear dynamic and loss models","authors":"Rudy Nie ,&nbsp;Jeff Scruggs ,&nbsp;Allan Chertok ,&nbsp;Darragh Clabby ,&nbsp;Mirko Previsic ,&nbsp;Anantha Karthikeyan","doi":"10.1016/j.ijome.2016.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research has shown that when constrained to causality, the optimal feedback controller for an ocean wave energy converter (WEC) subjected to stochastic waves can be solved as a non-standard Linear Quadratic-Gaussian (LQG) optimal control problem. In this paper, we present a relaxation to the modeling assumptions that must be made to apply this theory. Specifically, we propose a technique that uses the principle of Gaussian Closure to accommodate nonlinear WEC dynamics in the synthesis of the optimal feedback law. The technique is approximate, in the sense that it arrives at a computationally efficient control synthesis technique through a Gaussian approximation of the stationary stochastic response of the system. This approach allows for a wide range of nonlinear dynamical models to be considered, and also accommodates many complex loss mechanisms in the power transmission system. The technique is demonstrated through simulation examples pertaining to a flap-type WEC with a hydraulic power train.</p></div>","PeriodicalId":100705,"journal":{"name":"International Journal of Marine Energy","volume":"15 ","pages":"Pages 41-55"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijome.2016.04.004","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Marine Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214166916300169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Recent research has shown that when constrained to causality, the optimal feedback controller for an ocean wave energy converter (WEC) subjected to stochastic waves can be solved as a non-standard Linear Quadratic-Gaussian (LQG) optimal control problem. In this paper, we present a relaxation to the modeling assumptions that must be made to apply this theory. Specifically, we propose a technique that uses the principle of Gaussian Closure to accommodate nonlinear WEC dynamics in the synthesis of the optimal feedback law. The technique is approximate, in the sense that it arrives at a computationally efficient control synthesis technique through a Gaussian approximation of the stationary stochastic response of the system. This approach allows for a wide range of nonlinear dynamical models to be considered, and also accommodates many complex loss mechanisms in the power transmission system. The technique is demonstrated through simulation examples pertaining to a flap-type WEC with a hydraulic power train.

随机波中波浪能量转换器的最优因果控制——适应非线性动力和损失模型
近年来的研究表明,在受因果关系约束的情况下,受随机波动影响的海浪能量转换器(WEC)的最优反馈控制器可求解为非标准线性二次高斯(LQG)最优控制。在本文中,我们提出了一个松弛的建模假设,必须作出应用这一理论。具体来说,我们提出了一种在最优反馈律的综合中使用高斯闭合原理来适应非线性WEC动力学的技术。该技术是近似的,从某种意义上说,它通过系统平稳随机响应的高斯近似达到计算效率的控制综合技术。该方法考虑了广泛的非线性动力学模型,并适应了输电系统中许多复杂的损耗机制。通过一个带有液压动力系统的襟翼式WEC的仿真实例,对该技术进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信