Artificial immune system based intrusion detection

Eman Abd El Raoof Abas, H. Abdelkader, A. Keshk
{"title":"Artificial immune system based intrusion detection","authors":"Eman Abd El Raoof Abas, H. Abdelkader, A. Keshk","doi":"10.1109/INTELCIS.2015.7397274","DOIUrl":null,"url":null,"abstract":"Due to the growing of internet applications, the needs of internet security are increasing. Intrusion detection system is the primary approaches used for saving systems from internal and external intruders. Several techniques have been applied to intrusion detection system such as artificial neural Network, genetic algorithms, artificial immune system. Most researchers suggested improving the intrusion detection performance and accuracy. In this paper, we used artificial immune system network based intrusion detection. In our framework we suggest using GureKddcup database set for intrusion detection and apply R-chunk algorithm of artificial immune system technique, it is used for anomaly detection .An optimized feature selection of rough set theory used for enhancing time consuming.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"39 1 1","pages":"542-546"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Due to the growing of internet applications, the needs of internet security are increasing. Intrusion detection system is the primary approaches used for saving systems from internal and external intruders. Several techniques have been applied to intrusion detection system such as artificial neural Network, genetic algorithms, artificial immune system. Most researchers suggested improving the intrusion detection performance and accuracy. In this paper, we used artificial immune system network based intrusion detection. In our framework we suggest using GureKddcup database set for intrusion detection and apply R-chunk algorithm of artificial immune system technique, it is used for anomaly detection .An optimized feature selection of rough set theory used for enhancing time consuming.
基于人工免疫系统的入侵检测
随着互联网应用的不断增长,对网络安全的需求也在不断增加。入侵检测系统是保护系统免受内部和外部入侵的主要方法。人工神经网络、遗传算法、人工免疫系统等技术已被应用于入侵检测系统中。大多数研究人员建议提高入侵检测的性能和准确性。本文采用基于人工免疫系统网络的入侵检测方法。在我们的框架中,我们建议使用GureKddcup数据库集进行入侵检测,并采用人工免疫系统技术中的R-chunk算法进行异常检测,并采用粗糙集理论的优化特征选择来提高时间消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信