Relations between capacities and maximum principle

M. Yamasaki
{"title":"Relations between capacities and maximum principle","authors":"M. Yamasaki","doi":"10.32917/HMJ/1206138586","DOIUrl":null,"url":null,"abstract":"There are various definitions of capacities in potential theory. These capacities are usually used to determine potential theoretic exceptional sets. The aim of this paper is to study some properties of these capacities as set functions. More precisely, let Ω be a locally compact Hausdorff space and Φ be a kernel, i. e., a lower semicontinuous function on Ω x Ω which takes values in (0, + oo]. The adjoint kernel Φ is defined by Φ(x, y) = Φ(y, x). Φ is called symmetric if Φ = Φ. A measure μ will always be a non-negative Radon measure with compact support Sμ. The ^-potential of μ is defined by","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"96 1","pages":"59-69"},"PeriodicalIF":0.0000,"publicationDate":"1969-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There are various definitions of capacities in potential theory. These capacities are usually used to determine potential theoretic exceptional sets. The aim of this paper is to study some properties of these capacities as set functions. More precisely, let Ω be a locally compact Hausdorff space and Φ be a kernel, i. e., a lower semicontinuous function on Ω x Ω which takes values in (0, + oo]. The adjoint kernel Φ is defined by Φ(x, y) = Φ(y, x). Φ is called symmetric if Φ = Φ. A measure μ will always be a non-negative Radon measure with compact support Sμ. The ^-potential of μ is defined by
容量与最大原则之间的关系
在电势理论中,对能力有不同的定义。这些能力通常用于确定潜在的理论异常集。本文的目的是研究这些能力作为集函数的一些性质。更准确地说,设Ω是一个局部紧化的Hausdorff空间,Φ是一个核,即Ω x Ω上的下半连续函数,其取值范围为(0,+ oo)。伴随核Φ定义为Φ(x, y) = Φ(y, x)。如果Φ = Φ,则Φ称为对称核。度量μ总是具有紧致支持的非负氡度量Sμ。μ的^-势定义为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信