Eisenstein cohomology classes for GL N over imaginary quadratic fields

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
N. Bergeron, Pierre Charollois, Luis E. García
{"title":"Eisenstein cohomology classes for GL N over imaginary quadratic fields","authors":"N. Bergeron, Pierre Charollois, Luis E. García","doi":"10.1515/crelle-2022-0089","DOIUrl":null,"url":null,"abstract":"Abstract We study the arithmetic of degree N - 1 {N-1} Eisenstein cohomology classes for the locally symmetric spaces attached to GL N {\\mathrm{GL}_{N}} over an imaginary quadratic field k. Under natural conditions we evaluate these classes on ( N - 1 ) {(N-1)} -cycles associated to degree N extensions L / k {L/k} as linear combinations of generalized Dedekind sums. As a consequence we prove a remarkable conjecture of Sczech and Colmez expressing critical values of L-functions attached to Hecke characters of L as polynomials in Kronecker–Eisenstein series evaluated at torsion points on elliptic curves with complex multiplication by k. We recover in particular the algebraicity of these critical values.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We study the arithmetic of degree N - 1 {N-1} Eisenstein cohomology classes for the locally symmetric spaces attached to GL N {\mathrm{GL}_{N}} over an imaginary quadratic field k. Under natural conditions we evaluate these classes on ( N - 1 ) {(N-1)} -cycles associated to degree N extensions L / k {L/k} as linear combinations of generalized Dedekind sums. As a consequence we prove a remarkable conjecture of Sczech and Colmez expressing critical values of L-functions attached to Hecke characters of L as polynomials in Kronecker–Eisenstein series evaluated at torsion points on elliptic curves with complex multiplication by k. We recover in particular the algebraicity of these critical values.
虚二次域上GL N的爱森斯坦上同类
摘要研究了虚二次域k上局部对称空间GL N {\ mathm {GL}_{N}}的N-1 {N-1}次Eisenstein上同调类的算法。在自然条件下,我们将这些类在N次扩展L/k {L/k}相关的(N-1) {(N-1)}环上作为广义Dedekind和的线性组合求值。因此,我们证明了schzech和Colmez的一个重要猜想,将L的Hecke特征上的L函数的临界值表示为Kronecker-Eisenstein级数的多项式,在椭圆曲线的扭转点上用复数乘以k来求值。我们特别恢复了这些临界值的代数性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信