{"title":"Second-Order Characterizations via Partial Smoothing","authors":"Anurag Anshu, M. Berta, Rahul Jain, M. Tomamichel","doi":"10.1109/ISIT.2019.8849622","DOIUrl":null,"url":null,"abstract":"Smooth entropies are a tool for quantifying resource trade-offs in information theory and cryptography. However, in typical multi-partite problems some of the sub-systems are often left unchanged and this is not reflected by the standard smoothing of information measures over a ball of close states. We propose to smooth instead only over a ball of close states which also have some of the reduced states on the relevant sub-systems fixed. This partial smoothing of information measures naturally allows to give more refined characterizations of various information-theoretic problems in the one-shot setting. As a consequence, we can derive asymptotic second-order characterizations for tasks such as privacy amplification against classical side information or classical state splitting. For quantum problems like state merging the general resource trade-off is tightly characterized by partially smoothed information measures as well.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"46 1","pages":"937-941"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Smooth entropies are a tool for quantifying resource trade-offs in information theory and cryptography. However, in typical multi-partite problems some of the sub-systems are often left unchanged and this is not reflected by the standard smoothing of information measures over a ball of close states. We propose to smooth instead only over a ball of close states which also have some of the reduced states on the relevant sub-systems fixed. This partial smoothing of information measures naturally allows to give more refined characterizations of various information-theoretic problems in the one-shot setting. As a consequence, we can derive asymptotic second-order characterizations for tasks such as privacy amplification against classical side information or classical state splitting. For quantum problems like state merging the general resource trade-off is tightly characterized by partially smoothed information measures as well.