L. Ostroumova, P. Prokhorenkov, E. Samosvat, P. Serdyukov
{"title":"Publication Date Prediction through Reverse Engineering of the Web","authors":"L. Ostroumova, P. Prokhorenkov, E. Samosvat, P. Serdyukov","doi":"10.1145/2835776.2835796","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on one of the most challenging tasks in temporal information retrieval: detection of a web page publication date. The natural approach to this problem is to find the publication date in the HTML body of a page. However, there are two fundamental problems with this approach. First, not all web pages contain the publication dates in their texts. Second, it is hard to distinguish the publication date among all the dates found in the page's text. The approach we suggest in this paper supplements methods of date extraction from the page's text with novel link-based methods of dating. Some of our link-based methods are based on a probabilistic model of the Web graph structure evolution, which relies on the publication dates of web pages as on its parameters. We use this model to estimate the publication dates of web pages: based only on the link structure currently observed, we perform a ``reverse engineering'' to reveal the whole process of the Web's evolution.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we focus on one of the most challenging tasks in temporal information retrieval: detection of a web page publication date. The natural approach to this problem is to find the publication date in the HTML body of a page. However, there are two fundamental problems with this approach. First, not all web pages contain the publication dates in their texts. Second, it is hard to distinguish the publication date among all the dates found in the page's text. The approach we suggest in this paper supplements methods of date extraction from the page's text with novel link-based methods of dating. Some of our link-based methods are based on a probabilistic model of the Web graph structure evolution, which relies on the publication dates of web pages as on its parameters. We use this model to estimate the publication dates of web pages: based only on the link structure currently observed, we perform a ``reverse engineering'' to reveal the whole process of the Web's evolution.