Deep Crisp Boundaries

Yupei Wang, Xin Zhao, Kaiqi Huang
{"title":"Deep Crisp Boundaries","authors":"Yupei Wang, Xin Zhao, Kaiqi Huang","doi":"10.1109/CVPR.2017.187","DOIUrl":null,"url":null,"abstract":"Edge detection had made significant progress with the help of deep Convolutional Networks (ConvNet). ConvNet based edge detectors approached human level performance on standard benchmarks. We provide a systematical study of these detector outputs, and show that they failed to accurately localize edges, which can be adversarial for tasks that require crisp edge inputs. In addition, we propose a novel refinement architecture to address the challenging problem of learning a crisp edge detector using ConvNet. Our method leverages a top-down backward refinement pathway, and progressively increases the resolution of feature maps to generate crisp edges. Our results achieve promising performance on BSDS500, surpassing human accuracy when using standard criteria, and largely outperforming state-of-the-art methods when using more strict criteria. We further demonstrate the benefit of crisp edge maps for estimating optical flow and generating object proposals.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"1724-1732"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

Edge detection had made significant progress with the help of deep Convolutional Networks (ConvNet). ConvNet based edge detectors approached human level performance on standard benchmarks. We provide a systematical study of these detector outputs, and show that they failed to accurately localize edges, which can be adversarial for tasks that require crisp edge inputs. In addition, we propose a novel refinement architecture to address the challenging problem of learning a crisp edge detector using ConvNet. Our method leverages a top-down backward refinement pathway, and progressively increases the resolution of feature maps to generate crisp edges. Our results achieve promising performance on BSDS500, surpassing human accuracy when using standard criteria, and largely outperforming state-of-the-art methods when using more strict criteria. We further demonstrate the benefit of crisp edge maps for estimating optical flow and generating object proposals.
深脆边界
在深度卷积网络(ConvNet)的帮助下,边缘检测取得了重大进展。基于卷积神经网络的边缘检测器在标准基准测试中的表现接近人类水平。我们对这些检测器输出进行了系统的研究,并表明它们无法准确地定位边缘,这对于需要清晰边缘输入的任务来说可能是对抗的。此外,我们提出了一种新的改进架构来解决使用卷积神经网络学习清晰边缘检测器的挑战性问题。该方法利用自顶向下的反向细化路径,逐步提高特征图的分辨率,生成清晰的边缘。我们的结果在BSDS500上取得了很好的性能,在使用标准标准时超过了人类的准确性,在使用更严格的标准时大大优于最先进的方法。我们进一步证明了清晰的边缘图在估计光流和生成目标建议方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信