Triangular functions in solving Weakly Singular Volterra integral equations

Monireh Nosrati̇, H. Afshari
{"title":"Triangular functions in solving Weakly Singular Volterra integral equations","authors":"Monireh Nosrati̇, H. Afshari","doi":"10.31197/atnaa.1236577","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the triangular orthogonal functions as a basis functions \nfor solution of weakly singular Volterra integral equations of the second \nkind. Powerful properties of these functions and some operational matrices \nare utilized in a direct method to reduce singular integral equation to \nsome algebraic equations. The presented method does not need any integration \nfor obtaining the constant coefficients. The method is computationally \nattractive, and applications are demonstrated through illustrative examples.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1236577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose the triangular orthogonal functions as a basis functions for solution of weakly singular Volterra integral equations of the second kind. Powerful properties of these functions and some operational matrices are utilized in a direct method to reduce singular integral equation to some algebraic equations. The presented method does not need any integration for obtaining the constant coefficients. The method is computationally attractive, and applications are demonstrated through illustrative examples.
求解弱奇异Volterra积分方程中的三角函数
本文提出了三角形正交函数作为求解第二类弱奇异Volterra积分方程的基函数。利用这些函数和运算矩阵的强大性质,直接将奇异积分方程化简为代数方程。该方法不需要任何积分即可得到常系数。该方法在计算上具有吸引力,并通过举例说明了其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信