{"title":"Measurement of surface roughness by a machine vision system","authors":"F. Luk, V. Huynh, W. North","doi":"10.1088/0022-3735/22/12/001","DOIUrl":null,"url":null,"abstract":"A new method of surface roughness measurement was developed for use in a production environment. This method employs a microcomputer-based vision system to analyse the pattern of scattered light from the surface to derive a roughness parameter. The roughness parameters were obtained for a number of tool-steel samples which were ground to different roughnesses. A correlation curve was established by plotting the roughness parameters against the corresponding average surface roughness readings obtained from a stylus instrument. Similar correlation curves were produced for different materials such as brass and copper. Surface roughness measurement was also performed for specimens immersed in oil, a condition similar to that of a production environment. Some observable trends were found. The proposed method provides a fast and accurate means for measuring surface roughness. Its repeatability and versatility compares favourably with other methods.","PeriodicalId":16791,"journal":{"name":"Journal of Physics E: Scientific Instruments","volume":"54 1","pages":"977-980"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics E: Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0022-3735/22/12/001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104
Abstract
A new method of surface roughness measurement was developed for use in a production environment. This method employs a microcomputer-based vision system to analyse the pattern of scattered light from the surface to derive a roughness parameter. The roughness parameters were obtained for a number of tool-steel samples which were ground to different roughnesses. A correlation curve was established by plotting the roughness parameters against the corresponding average surface roughness readings obtained from a stylus instrument. Similar correlation curves were produced for different materials such as brass and copper. Surface roughness measurement was also performed for specimens immersed in oil, a condition similar to that of a production environment. Some observable trends were found. The proposed method provides a fast and accurate means for measuring surface roughness. Its repeatability and versatility compares favourably with other methods.