H. Sridevi, Shefali Jagwani, S. Kulkarni, H. Ravikumar
{"title":"Frequency Control in an Autonomous Microgrid Using GA Based Optimization Technique","authors":"H. Sridevi, Shefali Jagwani, S. Kulkarni, H. Ravikumar","doi":"10.13052/dgaej2156-3306.38210","DOIUrl":null,"url":null,"abstract":"In recent times the rapid development of distributed energy sources has transformed the conventional electrical grid to a decentralised system. This has led to the advancement in research of microgrid. In the conventional grid, the voltage and frequency regulation depends on the speed control of alternators connected to the grid. But for an autonomous microgrid, the voltage and frequency has to be regulated independent of the main grid. Deviation in the frequency occurs whenever there is change in the load and due to inherent variability of distributed energy sources. This deviation can be regulated by optimising the droop coefficients using Genetic algorithm (GA). Simulations have been carried out in MATLAB/SIMULINK for different types of loads (linear and non-linear) and results are shown for frequency deviation, and active power sharing of the DGs. The responses for frequency deviations with and without GA optimizations are presented.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.38210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent times the rapid development of distributed energy sources has transformed the conventional electrical grid to a decentralised system. This has led to the advancement in research of microgrid. In the conventional grid, the voltage and frequency regulation depends on the speed control of alternators connected to the grid. But for an autonomous microgrid, the voltage and frequency has to be regulated independent of the main grid. Deviation in the frequency occurs whenever there is change in the load and due to inherent variability of distributed energy sources. This deviation can be regulated by optimising the droop coefficients using Genetic algorithm (GA). Simulations have been carried out in MATLAB/SIMULINK for different types of loads (linear and non-linear) and results are shown for frequency deviation, and active power sharing of the DGs. The responses for frequency deviations with and without GA optimizations are presented.