Y. Peng, Y. Liu, F. Yang, X. L. Zhang, X. P. Yu, Z. Lu, W. M. Lim, C. H. Hu
{"title":"A 100MHz — 2GHz wireless receiver in 40-nm CMOS for software-defined radio","authors":"Y. Peng, Y. Liu, F. Yang, X. L. Zhang, X. P. Yu, Z. Lu, W. M. Lim, C. H. Hu","doi":"10.1109/EDSSC.2011.6117693","DOIUrl":null,"url":null,"abstract":"Software-defined radio (SDR), one of solutions to realize multi-mode terminal for mobile communication standards, has attracted intensive studies. A wideband wireless receiver is designed in a 40-nm CMOS process for SDR, which can cover the frequency range from 100MHz to 2GHz. The wideband RF front-end includes a low noise amplifier (LNA), a mixer, intermediate frequency amplifier (IF AMP) and a variable gain amplifier (VGA). The focal point of the design lies in the wideband LNA. The wideband inductorless LNA with 1.1-V supply is a two-stage amplifier that can operates from 100MHz to 2GHz. The noise figure (NF) of the LNA is 2.2–2.4 dB while it can achieve gains of 24-12 dB and 0– •12 dB when working under the active mode and passive mode, respectively. The whole system provides a NF of 3.2–3.5 dB with 5.02mw power consumption.","PeriodicalId":6363,"journal":{"name":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","volume":"16 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2011.6117693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Software-defined radio (SDR), one of solutions to realize multi-mode terminal for mobile communication standards, has attracted intensive studies. A wideband wireless receiver is designed in a 40-nm CMOS process for SDR, which can cover the frequency range from 100MHz to 2GHz. The wideband RF front-end includes a low noise amplifier (LNA), a mixer, intermediate frequency amplifier (IF AMP) and a variable gain amplifier (VGA). The focal point of the design lies in the wideband LNA. The wideband inductorless LNA with 1.1-V supply is a two-stage amplifier that can operates from 100MHz to 2GHz. The noise figure (NF) of the LNA is 2.2–2.4 dB while it can achieve gains of 24-12 dB and 0– •12 dB when working under the active mode and passive mode, respectively. The whole system provides a NF of 3.2–3.5 dB with 5.02mw power consumption.