Irregular Shaped Small Nodule Detection Using a Robust Scan Statistic.

Pub Date : 2023-01-01 DOI:10.1007/s12561-022-09353-7
Ali Abolhassani, Marcos O Prates, Safieh Mahmoodi
{"title":"Irregular Shaped Small Nodule Detection Using a Robust Scan Statistic.","authors":"Ali Abolhassani,&nbsp;Marcos O Prates,&nbsp;Safieh Mahmoodi","doi":"10.1007/s12561-022-09353-7","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial scan statistics based on the Poisson and binomial models are the most common methods to detect spatial clusters in disease surveillance. These models rely on Monte-Carlo simulation which are time consuming. Moreover, frequently, datasets present over-dispersion which cannot be handled by them. Thus, we have the following goals. First, we propose irregularly shaped spatial scan for the Bell, Poisson, and binomial. The Bell distribution has just one parameter but it is capable of handling over-dispersed datasets. Second, we apply these scan statistics to big maps. A fast version, without Monte-Carlo simulation, for the proposed Poisson and binomial scans is introduced. Intensive simulation studies are carried out to assess the quality of the proposals. In addition, we show the time improvement of the fast scan versions over their traditional ones. Finally, we end the paper with an application on the detection of irregular shape small nodules in a medical image.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12561-022-09353-7.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415267/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-022-09353-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The spatial scan statistics based on the Poisson and binomial models are the most common methods to detect spatial clusters in disease surveillance. These models rely on Monte-Carlo simulation which are time consuming. Moreover, frequently, datasets present over-dispersion which cannot be handled by them. Thus, we have the following goals. First, we propose irregularly shaped spatial scan for the Bell, Poisson, and binomial. The Bell distribution has just one parameter but it is capable of handling over-dispersed datasets. Second, we apply these scan statistics to big maps. A fast version, without Monte-Carlo simulation, for the proposed Poisson and binomial scans is introduced. Intensive simulation studies are carried out to assess the quality of the proposals. In addition, we show the time improvement of the fast scan versions over their traditional ones. Finally, we end the paper with an application on the detection of irregular shape small nodules in a medical image.

Supplementary information: The online version contains supplementary material available at 10.1007/s12561-022-09353-7.

Abstract Image

Abstract Image

Abstract Image

分享
查看原文
基于鲁棒扫描统计量的不规则小结节检测。
基于泊松模型和二项模型的空间扫描统计是疾病监测中最常用的空间聚类检测方法。这些模型依赖于蒙特卡罗模拟,耗时较长。此外,数据集经常出现过度分散,这是它们无法处理的。因此,我们有以下目标。首先,我们提出了不规则形状的空间扫描贝尔,泊松和二项。贝尔分布只有一个参数,但它能够处理过度分散的数据集。其次,我们将这些扫描统计数据应用于大地图。一个快速版本,没有蒙特卡罗模拟,提出了泊松和二项扫描。进行了密集的模拟研究,以评估建议的质量。此外,我们还展示了快速扫描版本比传统版本在时间上的改进。最后,我们以一个在医学图像中不规则形状小结节检测中的应用作为本文的结束语。补充信息:在线版本包含补充资料,下载地址为10.1007/s12561-022-09353-7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信