The properties of Polycyclic Aromatic Hydrocarbons in galaxies: constraints on PAH sizes, charge and radiation fields

D. Rigopoulou, M. Barale, D. Clary, X. Shan, A. Alonso-Herrero, I. García-Bernete, L. Hunt, B. Kerkeni, M. Pereira-Santaella, P. Roche
{"title":"The properties of Polycyclic Aromatic Hydrocarbons in galaxies: constraints on PAH sizes, charge and radiation fields","authors":"D. Rigopoulou, M. Barale, D. Clary, X. Shan, A. Alonso-Herrero, I. García-Bernete, L. Hunt, B. Kerkeni, M. Pereira-Santaella, P. Roche","doi":"10.1093/MNRAS/STAB959","DOIUrl":null,"url":null,"abstract":"Based on theoretical spectra computed using Density Functional Theory we study the properties of Polycyclic Aromatic Hydrocarbons (PAH). In particular using bin-average spectra of PAH molecules with varying number of carbons we investigate how the intensity of the mid-infrared emission bands, 3.3, 6.2, 7.7 and 11.3 microns, respond to changes in the number of carbons, charge of the molecule, and the hardness of the radiation field that impinges the molecule. We confirm that the 6.2/7.7 band ratio is a good predictor for the size of the PAH molecule (based on the number of carbons present). We also investigate the efficacy of the 11.3/3.3 ratio to trace the size of PAH molecules and note the dependence of this ratio on the hardness of the radiation field. While the ratio can potentially also be used to trace PAH molecular size, a better understanding of the impact of the underlying radiation field on the 3.3 microns feature and the effect of the extinction on the ratio should be evaluated. The newly developed diagnostics are compared to band ratios measured in a variety of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. We demonstrate that the band ratios can be used to probe the conditions of the interstellar medium in galaxies and differentiate between environments encountered in normal star forming galaxies and Active Galactic Nuclei. Our work highlights the immense potential that PAH observations with the James Webb Space Telescope will have on our understanding of the PAH emission itself and of the physical conditions in galaxies near and far.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/MNRAS/STAB959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Based on theoretical spectra computed using Density Functional Theory we study the properties of Polycyclic Aromatic Hydrocarbons (PAH). In particular using bin-average spectra of PAH molecules with varying number of carbons we investigate how the intensity of the mid-infrared emission bands, 3.3, 6.2, 7.7 and 11.3 microns, respond to changes in the number of carbons, charge of the molecule, and the hardness of the radiation field that impinges the molecule. We confirm that the 6.2/7.7 band ratio is a good predictor for the size of the PAH molecule (based on the number of carbons present). We also investigate the efficacy of the 11.3/3.3 ratio to trace the size of PAH molecules and note the dependence of this ratio on the hardness of the radiation field. While the ratio can potentially also be used to trace PAH molecular size, a better understanding of the impact of the underlying radiation field on the 3.3 microns feature and the effect of the extinction on the ratio should be evaluated. The newly developed diagnostics are compared to band ratios measured in a variety of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. We demonstrate that the band ratios can be used to probe the conditions of the interstellar medium in galaxies and differentiate between environments encountered in normal star forming galaxies and Active Galactic Nuclei. Our work highlights the immense potential that PAH observations with the James Webb Space Telescope will have on our understanding of the PAH emission itself and of the physical conditions in galaxies near and far.
星系中多环芳烃的性质:对多环芳烃大小、电荷和辐射场的限制
基于密度泛函理论计算的理论谱,研究了多环芳烃(PAH)的性质。特别是利用不同碳数的多环芳烃分子的双平均光谱,我们研究了3.3、6.2、7.7和11.3微米的中红外发射波段的强度如何响应碳数、分子电荷以及撞击分子的辐射场硬度的变化。我们证实6.2/7.7波段比是多环芳烃分子大小的一个很好的预测因子(基于存在的碳数)。我们还研究了11.3/3.3比值在追踪多环芳烃分子大小方面的功效,并注意到该比值与辐射场硬度的关系。虽然该比值也可能用于追踪多环芳烃的分子大小,但应该更好地了解潜在辐射场对3.3微米特征的影响以及消光对比值的影响。新开发的诊断方法与斯皮策太空望远镜上的红外光谱仪观测到的各种星系的波段比进行了比较。我们证明波段比可以用来探测星系中星际介质的条件,并区分在正常恒星形成星系和活动星系核中遇到的环境。我们的工作强调了詹姆斯韦伯太空望远镜的多环芳烃观测的巨大潜力,这将有助于我们了解多环芳烃发射本身以及远近星系的物理条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信