A. A. Rigo, A. M. Cezaro, D. K. Muenchen, Janine Martinazzo, A. Manzoli, J. Steffens, C. Steffens
{"title":"Heavy metals detection in river water with cantilever nanobiosensor","authors":"A. A. Rigo, A. M. Cezaro, D. K. Muenchen, Janine Martinazzo, A. Manzoli, J. Steffens, C. Steffens","doi":"10.1080/03601234.2019.1685318","DOIUrl":null,"url":null,"abstract":"Abstract Heavy metals can be highly toxic depending on the dose and the chemical form. In this context, sensing devices such as nanobiosensors have been presented as a promising tool to monitor contaminants at micro and nanoscale. In this work, cantilever nanobiosensors with phosphatase alkaline were developed and applied to detect heavy metals (Pb, Ni, Cd, Zn, Co, and Al) in river water. The nanobiosensor surface was functionalized by the self-assembled monolayers (SAM) technique using 16-mercaptohexadecanoic acid, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N- hydroxysuccinimide (NHS), and phosphatase alkaline enzyme. The sensing layer deposited on the cantilever surface presented a uniform morphology, at nanoscale, with 80 nm of thickness. The nanobiosensor showed a detection limit in the ppb range and high sensitivity, with a stability of fifteen days. The developed cantilever nanobiosensor is a simple tool, suitable for the direct detection of contaminants in river water.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"5 1","pages":"239 - 249"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03601234.2019.1685318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Abstract Heavy metals can be highly toxic depending on the dose and the chemical form. In this context, sensing devices such as nanobiosensors have been presented as a promising tool to monitor contaminants at micro and nanoscale. In this work, cantilever nanobiosensors with phosphatase alkaline were developed and applied to detect heavy metals (Pb, Ni, Cd, Zn, Co, and Al) in river water. The nanobiosensor surface was functionalized by the self-assembled monolayers (SAM) technique using 16-mercaptohexadecanoic acid, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N- hydroxysuccinimide (NHS), and phosphatase alkaline enzyme. The sensing layer deposited on the cantilever surface presented a uniform morphology, at nanoscale, with 80 nm of thickness. The nanobiosensor showed a detection limit in the ppb range and high sensitivity, with a stability of fifteen days. The developed cantilever nanobiosensor is a simple tool, suitable for the direct detection of contaminants in river water.