Free vibration response of bidirectional functionally graded rotating micro-disk under mechanical and thermal loading

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
S. Pal, D. Das
{"title":"Free vibration response of bidirectional functionally graded rotating micro-disk under mechanical and thermal loading","authors":"S. Pal, D. Das","doi":"10.1177/03093247231160617","DOIUrl":null,"url":null,"abstract":"The present work studies the free vibration response of functionally graded rotating micro-disks subjected to transverse pressure and thermal loading based on the modified couple stress theory. The disk material is considered to be functionally graded along the radial and thickness directions, and its properties are assumed to be temperature-dependent following the Touloukian model. The mathematical formulation is based on an energy functional involving the von Kármán type non-linearity, in which appropriate displacement derivatives and its conjugate stress measures are used to define the strain energy of the micro-disk. The minimum potential energy principle is employed to develop the governing equations for determining the deformed configuration of the micro-disk under combined centrifugal, pressure and thermal loading. Further, the governing equations for free vibratory motion of the micro-disk are derived following Hamilton’s principle and incorporating the tangent stiffness of the deformed micro-disk. The governing equations are discretized and solved employing the Ritz method. The mathematical model is successfully validated with different reduced problems available in the literature. The influence of rotational speed, transverse pressure, thermal loading, size-dependent thickness and volume fraction indices are investigated for a wide range of parametric values. Some illustrative mode shapes along with the contour have also been presented. The present study is first of its kind and the presented results would definitely serve as benchmarks for any further study in this field.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"51 1","pages":"517 - 537"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231160617","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present work studies the free vibration response of functionally graded rotating micro-disks subjected to transverse pressure and thermal loading based on the modified couple stress theory. The disk material is considered to be functionally graded along the radial and thickness directions, and its properties are assumed to be temperature-dependent following the Touloukian model. The mathematical formulation is based on an energy functional involving the von Kármán type non-linearity, in which appropriate displacement derivatives and its conjugate stress measures are used to define the strain energy of the micro-disk. The minimum potential energy principle is employed to develop the governing equations for determining the deformed configuration of the micro-disk under combined centrifugal, pressure and thermal loading. Further, the governing equations for free vibratory motion of the micro-disk are derived following Hamilton’s principle and incorporating the tangent stiffness of the deformed micro-disk. The governing equations are discretized and solved employing the Ritz method. The mathematical model is successfully validated with different reduced problems available in the literature. The influence of rotational speed, transverse pressure, thermal loading, size-dependent thickness and volume fraction indices are investigated for a wide range of parametric values. Some illustrative mode shapes along with the contour have also been presented. The present study is first of its kind and the presented results would definitely serve as benchmarks for any further study in this field.
双向功能梯度旋转微盘在机械和热载荷下的自由振动响应
基于修正耦合应力理论,研究了功能梯度旋转微盘在横向压力和热载荷作用下的自由振动响应。圆盘材料被认为是沿径向和厚度方向的功能梯度,其性质被认为是温度依赖的,遵循Touloukian模型。该数学公式基于一个涉及von Kármán型非线性的能量泛函,其中使用适当的位移导数及其共轭应力度量来定义微盘的应变能。利用最小势能原理建立了离心、压力和热载荷联合作用下微盘变形形态的控制方程。在此基础上,考虑变形后微盘的切向刚度,根据汉密尔顿原理推导了微盘自由振动运动的控制方程。对控制方程进行离散化,采用里兹法求解。用文献中不同的约简问题成功地验证了数学模型。研究了转速、横向压力、热载荷、尺寸相关的厚度和体积分数等指标在大范围参数值下的影响。此外,还给出了伴随轮廓线的一些说明性模态振型。本研究是同类研究中的首例,所提出的结果必将为该领域的任何进一步研究提供基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信