Generalization of Szász operators: quantitative estimate and bounded variation

IF 1 Q1 MATHEMATICS
K. Bozkurt, M. L. Limmam, A. Aral
{"title":"Generalization of Szász operators: quantitative estimate and bounded variation","authors":"K. Bozkurt, M. L. Limmam, A. Aral","doi":"10.15330/cmp.13.3.775-789","DOIUrl":null,"url":null,"abstract":"Difference of exponential type Szász and Szász-Kantorovich operators is obtained. Similar estimates are given for higher order $\\mu$-derivatives of the Szász operators and the Szász-Kantorovich type operators acting on the same order $\\mu$-derivative of the function. These differences are given in quantitative form using first modulus of continuity. Convergence in variation of the operators in the space of functions with bounded variation with respect to the variation seminorm is obtained. The results propose a general framework covering the results provided by previous literature.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"50 9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.13.3.775-789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Difference of exponential type Szász and Szász-Kantorovich operators is obtained. Similar estimates are given for higher order $\mu$-derivatives of the Szász operators and the Szász-Kantorovich type operators acting on the same order $\mu$-derivative of the function. These differences are given in quantitative form using first modulus of continuity. Convergence in variation of the operators in the space of functions with bounded variation with respect to the variation seminorm is obtained. The results propose a general framework covering the results provided by previous literature.
Szász算子的推广:定量估计和有界变差
得到了指数型Szász和Szász-Kantorovich算子的区别。对于Szász算子的高阶$\mu$导数和作用于函数的相同阶$\mu$导数的Szász-Kantorovich类型算子,给出了类似的估计。这些差异用连续性的第一模量以定量的形式给出。得到了有界变分函数空间中算子对变分半模的收敛性。结果提出了一个涵盖以前文献提供的结果的一般框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信