Sunyanan Choochotkaew, Tatsuhiro Chiba, Scott Trent, Marcelo Amaral
{"title":"Run Wild: Resource Management System with Generalized Modeling for Microservices on Cloud","authors":"Sunyanan Choochotkaew, Tatsuhiro Chiba, Scott Trent, Marcelo Amaral","doi":"10.1109/CLOUD53861.2021.00079","DOIUrl":null,"url":null,"abstract":"Microservice architecture competes with the traditional monolithic design by offering benefits of agility, flexibility, reusability resilience, and ease of use. Nevertheless, due to the increase in internal communication complexity, care must be taken for resource-usage scaling in harmony with placement scheduling, and request balancing to prevent cascading performance degradation across microservices. We prototype Run Wild, a resource management system that controls all mechanisms in the microservice-deployment process covering scaling, scheduling, and balancing to optimize for desirable performance on the dynamic cloud driven by an automatic, united, and consistent deployment plan. In this paper, we also highlight the significance of co-location aware metrics on predicting the resource usage and computing the deployment plan. We conducted experiments with an actual cluster on the IBM Cloud platform. RunWild reduced the 90th percentile response time by 11% and increased average throughput by 10% with more than 30% lower resource usage for widely used autoscaling benchmarks on Kubernetes clusters.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"48 1","pages":"609-618"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD53861.2021.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
Microservice architecture competes with the traditional monolithic design by offering benefits of agility, flexibility, reusability resilience, and ease of use. Nevertheless, due to the increase in internal communication complexity, care must be taken for resource-usage scaling in harmony with placement scheduling, and request balancing to prevent cascading performance degradation across microservices. We prototype Run Wild, a resource management system that controls all mechanisms in the microservice-deployment process covering scaling, scheduling, and balancing to optimize for desirable performance on the dynamic cloud driven by an automatic, united, and consistent deployment plan. In this paper, we also highlight the significance of co-location aware metrics on predicting the resource usage and computing the deployment plan. We conducted experiments with an actual cluster on the IBM Cloud platform. RunWild reduced the 90th percentile response time by 11% and increased average throughput by 10% with more than 30% lower resource usage for widely used autoscaling benchmarks on Kubernetes clusters.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)