A Fast, Provably Accurate Approximation Algorithm for Sparse Principal Component Analysis Reveals Human Genetic Variation Across the World.

Agniva Chowdhury, Aritra Bose, Samson Zhou, David P Woodruff, Petros Drineas
{"title":"A Fast, Provably Accurate Approximation Algorithm for Sparse Principal Component Analysis Reveals Human Genetic Variation Across the World.","authors":"Agniva Chowdhury, Aritra Bose, Samson Zhou, David P Woodruff, Petros Drineas","doi":"10.1007/978-3-031-04749-7_6","DOIUrl":null,"url":null,"abstract":"<p><p>Principal component analysis (PCA) is a widely used dimensionality reduction technique in machine learning and multivariate statistics. To improve the interpretability of PCA, various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis (SPCA). In this paper, we present ThreSPCA, a provably accurate algorithm based on thresholding the Singular Value Decomposition for the SPCA problem, without imposing any restrictive assumptions on the input covariance matrix. Our thresholding algorithm is conceptually simple; much faster than current state-of-the-art; and performs well in practice. When applied to genotype data from the 1000 Genomes Project, ThreSPCA is faster than previous benchmarks, at least as accurate, and leads to a set of interpretable biomarkers, revealing genetic diversity across the world.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"13278 ","pages":"86-106"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836035/pdf/nihms-1804098.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-04749-7_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Principal component analysis (PCA) is a widely used dimensionality reduction technique in machine learning and multivariate statistics. To improve the interpretability of PCA, various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis (SPCA). In this paper, we present ThreSPCA, a provably accurate algorithm based on thresholding the Singular Value Decomposition for the SPCA problem, without imposing any restrictive assumptions on the input covariance matrix. Our thresholding algorithm is conceptually simple; much faster than current state-of-the-art; and performs well in practice. When applied to genotype data from the 1000 Genomes Project, ThreSPCA is faster than previous benchmarks, at least as accurate, and leads to a set of interpretable biomarkers, revealing genetic diversity across the world.

Abstract Image

Abstract Image

稀疏主成分分析的快速、可证明精确的近似算法揭示了全球人类基因变异
主成分分析(PCA)是机器学习和多元统计中广泛使用的一种降维技术。为了提高 PCA 的可解释性,人们提出了各种获取稀疏主方向载荷的方法,这些方法被称为稀疏主成分分析(SPCA)。在本文中,我们提出了 ThreSPCA,这是一种基于阈值奇异值分解的可证明的精确算法,用于解决 SPCA 问题,而无需对输入协方差矩阵施加任何限制性假设。我们的阈值算法概念简单,比目前最先进的算法快得多,而且在实践中表现良好。将 ThreSPCA 应用于 "1000 基因组计划 "的基因型数据时,其速度比以前的基准算法更快,准确性至少与之相当,而且还产生了一组可解释的生物标记,揭示了全球的遗传多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信