{"title":"Calibrating with a smile: A Mellin transform approach to volatility surface calibration","authors":"M. Rodrigo , A. Lo","doi":"10.1016/j.ecosta.2022.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>The implied volatility<span><span> in the Black-Scholes framework is not a constant but a function of both the strike price (“smile/skew”) and the time to expiry. A popular approach to recovering the volatility surface is through the use of deterministic volatility function models via Dupire’s equation. A new method for volatility surface calibration based on the Mellin transform is proposed. An explicit formula for the volatility surface is obtained in terms of the Mellin transform of the </span>call option price with respect to the strike price, and a numerical algorithm is provided. Results of numerical simulations are presented and the stability of the method is numerically verified. The proposed Mellin transform approach provides a simpler and more direct fitting of generalised forms of the volatility surface given previously in the literature.</span></div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"36 ","pages":"Pages 73-80"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The implied volatility in the Black-Scholes framework is not a constant but a function of both the strike price (“smile/skew”) and the time to expiry. A popular approach to recovering the volatility surface is through the use of deterministic volatility function models via Dupire’s equation. A new method for volatility surface calibration based on the Mellin transform is proposed. An explicit formula for the volatility surface is obtained in terms of the Mellin transform of the call option price with respect to the strike price, and a numerical algorithm is provided. Results of numerical simulations are presented and the stability of the method is numerically verified. The proposed Mellin transform approach provides a simpler and more direct fitting of generalised forms of the volatility surface given previously in the literature.
期刊介绍:
Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.