Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas

L. Stanek, R. Clay, M. Dharma-wardana, M. Wood, K. Beckwith, M. Murillo
{"title":"Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas","authors":"L. Stanek, R. Clay, M. Dharma-wardana, M. Wood, K. Beckwith, M. Murillo","doi":"10.1063/5.0040062","DOIUrl":null,"url":null,"abstract":"Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn-Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP- MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force-matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of $\\sim20\\%$.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn-Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP- MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force-matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of $\sim20\%$.
致密等离子体分子动力学模拟中径向对势近似的有效性
致密等离子体的宏观模拟依赖于详细的微观信息,这些信息在计算上是昂贵的,而且很难通过实验来验证。在这项工作中,我们通过比较Kohn-Sham密度泛函数理论分子动力学(KS-MD)和径向对势分子动力学(RPP- MD)对一系列元素、温度和密度的影响,划定了微尺度模拟方法之间的精度边界。通过使用力匹配从KS-MD数据中提取最佳RPP,我们约束了它的函数形式,并消除了假设小粒子间距离为常数幂律的势类。我们的结果表明,RPP-MD和KS-MD在仅几个电子伏特的温度下的多个精度指标之间具有良好的一致性。rpp的使用使计算成本降低了几个数量级,并表明超过几个eV的温度就不需要三体势。由于其效率,经过验证的RPP-MD提供了一种途径,可以减少由于有限大小的影响而产生的错误,这些影响可能在$\sim20\%$的量级上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信