Meteorological analysis on extremely depleted 18O rainfall events during the summer in Adelaide, Australia

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Dizhou Wang, Xinping Zhang, Zidong Luo, Xiong Xiao, Zhong-fang Liu, Xinguang He, Z. Rao, H. Guan
{"title":"Meteorological analysis on extremely depleted 18O rainfall events during the summer in Adelaide, Australia","authors":"Dizhou Wang, Xinping Zhang, Zidong Luo, Xiong Xiao, Zhong-fang Liu, Xinguang He, Z. Rao, H. Guan","doi":"10.1175/jhm-d-22-0228.1","DOIUrl":null,"url":null,"abstract":"\nThe transport of atmospheric water vapor plays a crucial role in the production of precipitation and the variation of precipitation isotopic composition (δ18Op). This study investigates three precipitation events with extremely depleted precipitation isotopes in the summer rainfall of the Adelaide, Australia. Using fundamental water vapor diagnostic and moisture calculation methods, this research analyzes the impact of rainout levels along moisture transport paths, atmospheric circulation patterns, water vapor sources, and moisture transport on the extreme depletion of precipitation isotopes in the study area. The purpose of this study is to reveal the direct cause of generating extremely depleted δ18Op at hourly time scale, and to understand the influence of water vapor transport on δ18Op. The results show the diversity and complexity of δ18Op variation in summer precipitation events in Adelaide. The rainout caused by local and upstream large precipitation may be the main reason for the steep drop to an extremely low value of δ18Op. The phenomenon of sub-cloud secondary evaporation, which is driven by the interaction between relatively low humidity and high temperature at near-surface levels, plays a pivotal role in the entire precipitation process. This mechanism is particularly pronounced during the onset or cessation of precipitation events, thereby resulting in the observed enrichment of δ18Op values. The oxygen stable isotopic composition of water vapor (δ18Oa) would usually become higher, when the air mass mixes with new moisture with relatively high δ18Oa suppressing the influence of the previous rainout. The evapotranspiration(ET) from the underlying surface along water vapor transport pathways modulates the isotopic composition of atmospheric water vapor . When the δ18O in ET exceeds that in precipitation, δ18Oa gradually becomes enriched.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"11 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0228.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The transport of atmospheric water vapor plays a crucial role in the production of precipitation and the variation of precipitation isotopic composition (δ18Op). This study investigates three precipitation events with extremely depleted precipitation isotopes in the summer rainfall of the Adelaide, Australia. Using fundamental water vapor diagnostic and moisture calculation methods, this research analyzes the impact of rainout levels along moisture transport paths, atmospheric circulation patterns, water vapor sources, and moisture transport on the extreme depletion of precipitation isotopes in the study area. The purpose of this study is to reveal the direct cause of generating extremely depleted δ18Op at hourly time scale, and to understand the influence of water vapor transport on δ18Op. The results show the diversity and complexity of δ18Op variation in summer precipitation events in Adelaide. The rainout caused by local and upstream large precipitation may be the main reason for the steep drop to an extremely low value of δ18Op. The phenomenon of sub-cloud secondary evaporation, which is driven by the interaction between relatively low humidity and high temperature at near-surface levels, plays a pivotal role in the entire precipitation process. This mechanism is particularly pronounced during the onset or cessation of precipitation events, thereby resulting in the observed enrichment of δ18Op values. The oxygen stable isotopic composition of water vapor (δ18Oa) would usually become higher, when the air mass mixes with new moisture with relatively high δ18Oa suppressing the influence of the previous rainout. The evapotranspiration(ET) from the underlying surface along water vapor transport pathways modulates the isotopic composition of atmospheric water vapor . When the δ18O in ET exceeds that in precipitation, δ18Oa gradually becomes enriched.
澳大利亚阿德莱德夏季极贫降水事件的气象分析
大气水汽的输运对降水的产生和降水同位素组成(δ18Op)的变化起着至关重要的作用。本研究调查了澳大利亚阿德莱德夏季降雨中三个降水同位素极度耗尽的降水事件。利用基本的水汽诊断和水汽计算方法,分析了水汽输送路径上的降水水平、大气环流模式、水汽来源和水汽输送对研究区降水同位素极端耗竭的影响。本研究旨在揭示逐时尺度δ18Op极贫产生的直接原因,并了解水汽输送对δ18Op的影响。结果表明,阿德莱德夏季降水事件δ18Op变化具有多样性和复杂性。局地和上游大降水造成的降水可能是导致δ18Op急剧下降至极低值的主要原因。云下二次蒸发现象在整个降水过程中起关键作用,是近地面相对低湿和高温相互作用的结果。这一机制在降水事件开始或停止期间尤为明显,从而导致观测到的δ18Op值富集。水蒸气的氧稳定同位素组成(δ18Oa)通常会变高,当气团与δ18Oa相对较高的新水汽混合时,会抑制先前降雨的影响。下垫面蒸发蒸腾(ET)沿水汽输送路径调节大气水汽的同位素组成。当ET中的δ18O大于降水中的δ18Oa时,δ18Oa逐渐富集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrometeorology
Journal of Hydrometeorology 地学-气象与大气科学
CiteScore
7.40
自引率
5.30%
发文量
116
审稿时长
4-8 weeks
期刊介绍: The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信