Hydrogel-Based Sensitive and Humidity-Resistant Oxygen Gas Sensors Enabled by Porous Ecoflex Membranes

Jindong Ye, Zixuan Wu, Yuning Liang, Bizhang Zhong, Zijing Zhou, Zhenyi Li, Yaoming Wei, K. Tao, Jin Wu
{"title":"Hydrogel-Based Sensitive and Humidity-Resistant Oxygen Gas Sensors Enabled by Porous Ecoflex Membranes","authors":"Jindong Ye, Zixuan Wu, Yuning Liang, Bizhang Zhong, Zijing Zhou, Zhenyi Li, Yaoming Wei, K. Tao, Jin Wu","doi":"10.1109/Transducers50396.2021.9495425","DOIUrl":null,"url":null,"abstract":"In this paper, humidity-resistant, stable and sensitive oxygen gas sensors were fabricated by covering porous membranes on the surface of carrageenan/polyacrylamide (PAM) double-network (DN) hydrogel. The breathable and waterproof porous ecoflex membranes were fabricated via a facile and cost-effective template method. The proposed approach is capable of creating the micropores on the ecoflex membranes using the salt as hard template and water as the solvent. We also proposed the working mechanism of the ion-conducting hydrogel based oxygen sensor. The porous membranes enhance the immunity of the hydrogel sensor to humidity and retain its high response to oxygen. The response of the sensor to oxygen can keep stable in different relative humidity (RH) with the sensitivity of $4.49\\times 10^{-2}\\text{ppm}^{-1}$.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"11 1","pages":"843-846"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, humidity-resistant, stable and sensitive oxygen gas sensors were fabricated by covering porous membranes on the surface of carrageenan/polyacrylamide (PAM) double-network (DN) hydrogel. The breathable and waterproof porous ecoflex membranes were fabricated via a facile and cost-effective template method. The proposed approach is capable of creating the micropores on the ecoflex membranes using the salt as hard template and water as the solvent. We also proposed the working mechanism of the ion-conducting hydrogel based oxygen sensor. The porous membranes enhance the immunity of the hydrogel sensor to humidity and retain its high response to oxygen. The response of the sensor to oxygen can keep stable in different relative humidity (RH) with the sensitivity of $4.49\times 10^{-2}\text{ppm}^{-1}$.
由多孔Ecoflex膜实现的基于水凝胶的敏感和耐湿度氧气传感器
本文通过在卡拉胶/聚丙烯酰胺(PAM)双网水凝胶表面覆盖多孔膜,制备了耐湿、稳定、灵敏的氧气传感器。采用简单、经济的模板法制备了透气、防水的生态柔性多孔膜。该方法以盐为硬模板,水为溶剂,在生态柔性膜上形成微孔。提出了离子导电水凝胶氧传感器的工作机理。多孔膜增强了水凝胶传感器对湿度的免疫力,并保持其对氧气的高响应。传感器对氧气的响应在不同相对湿度(RH)下均能保持稳定,灵敏度为$4.49\ × 10^{-2}\text{ppm}^{-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信