Derivation of Sensing Features for Maximum Cyclic Autocorrelation Selection Based Signal Detection

S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse
{"title":"Derivation of Sensing Features for Maximum Cyclic Autocorrelation Selection Based Signal Detection","authors":"S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse","doi":"10.1109/VTCFall.2019.8891131","DOIUrl":null,"url":null,"abstract":"Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"75 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.
基于最大循环自相关选择的信号检测传感特征的推导
基于最大循环自相关选择(MCAS)的频谱感知技术是周期平稳检测技术中复杂度较低的一种。然而,基于MCAS的频谱传感的频谱传感特性还没有从理论上推导出来。本文给出了认知无线电网络中基于mcas的频谱感知特性的推导结果。在本研究中,我们导出了基于mcas的频谱传感的信号检测概率和虚警概率的封闭形式解。将理论值与数值算例进行了比较,算例表明理论值与数值吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信