Yuzhong Zhou, Zhèng-Hóng Lin, Yuan La, Junkai Huang, Xin Wang
{"title":"Analysis and Design of Power System Transformer Standard Based on Knowledge Graph","authors":"Yuzhong Zhou, Zhèng-Hóng Lin, Yuan La, Junkai Huang, Xin Wang","doi":"10.4108/eetsis.v9i6.2642","DOIUrl":null,"url":null,"abstract":"The transformer can convert one kind of electric energy such as AC current and AC voltage into another kind of electric energy with the same frequency. Knowledge graph (KG) can describe various entities and concepts in the real world and their relationships, and it can be considered as a semantic network for power system transformer. Hence, it is of vital importance to analyze and design the power system transformer standard based on the knowledge graph. To this end, we firstly examine the power system transformer with one KG node and one eavesdropper E, where the eavesdropper E can overhear the network from the source, which may cause physical-layer secure issue and an outage probability event. To deal with the issue, we analyze and design the system secure performance under the eavesdropper and define the outage probability for system security, by providing analytical expression of outage probability. We further investigate the power system transformer with multiple KG nodes which can help strengthen the system security and reliability. For such a system, we analyze and design the system secure performance under the eavesdropper and define the outage probability for system security, by providing analytical expression of outage probability. Finally, we give some simulations to analyze the impact of secure transformer standard on the power system, and verify the accuracy of our proposed analytical expression for the the power system transformer standard based on the knowledge graph.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v9i6.2642","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
The transformer can convert one kind of electric energy such as AC current and AC voltage into another kind of electric energy with the same frequency. Knowledge graph (KG) can describe various entities and concepts in the real world and their relationships, and it can be considered as a semantic network for power system transformer. Hence, it is of vital importance to analyze and design the power system transformer standard based on the knowledge graph. To this end, we firstly examine the power system transformer with one KG node and one eavesdropper E, where the eavesdropper E can overhear the network from the source, which may cause physical-layer secure issue and an outage probability event. To deal with the issue, we analyze and design the system secure performance under the eavesdropper and define the outage probability for system security, by providing analytical expression of outage probability. We further investigate the power system transformer with multiple KG nodes which can help strengthen the system security and reliability. For such a system, we analyze and design the system secure performance under the eavesdropper and define the outage probability for system security, by providing analytical expression of outage probability. Finally, we give some simulations to analyze the impact of secure transformer standard on the power system, and verify the accuracy of our proposed analytical expression for the the power system transformer standard based on the knowledge graph.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.