Asymptotics for Optimal Design Problems for the Schrödinger Equation with a Potential

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Alden Waters, Ekaterina Merkurjev
{"title":"Asymptotics for Optimal Design Problems for the Schrödinger Equation with a Potential","authors":"Alden Waters, Ekaterina Merkurjev","doi":"10.1155/2018/8162845","DOIUrl":null,"url":null,"abstract":"We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.","PeriodicalId":42964,"journal":{"name":"Journal of Optimization","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8162845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.
带势Schrödinger方程最优设计问题的渐近性
我们研究了最优可观察性问题,并使用谱理论证明了具有L∞Ω中一个位势的Schrödinger方程的时间渐近可观察性估计,其中Ω∧Rd。提出了一种利用时间渐近可观测常数对问题进行建模的简便方法。对于某些小势,我们证明了在给定条件下一个非零渐近可观测常数的存在性,并描述了它的显式性质和最优值。此外,我们给出了一个精确的数值模型来分析势阱的重要例子,包括修正谐振子的势阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Optimization
Journal of Optimization ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信