{"title":"Optical Lock-in Spectrometry Reveals Useful Spectral Features of Temporal Light Modulation in Several Light Source Technologies","authors":"C. Martinsons, Nicolas Picard, S. Carré","doi":"10.1080/15502724.2022.2077754","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents a study of the spectral characteristics of temporal light modulation in several technologies of lighting products. An optical lock-in spectrometer was designed for this purpose and integrated in a spectral radiant flux measurement facility. It was applied to incandescent and fluorescent lamps, as well as lamps based on white phosphor-converted LEDs and tunable RGB LEDs. The results are well correlated with the light emission processes of each technology. For incandescent lamps, the spectral modulation follows a 1/λ relationship in agreement with the blackbody radiation laws. Measurements performed on halophosphate and tri-phosphor tubes agree well with published data. The modulation and phase spectra of fluorescent lamps reveal a variable modulation rate across the visible range, directly related to the fluorescence lifetimes of the different luminophores, which were estimated from our data using a model of single exponential decay.The spectral modulation of white phosphor-converted LED lamps is nearly constant across the visible spectrum, demonstrating that their color parameters can be assessed from the lock-in modulation amplitude spectrum. In the case of tunable RGB LED lamps using PWM, the spectral modulation widely differs from the steady-state spectral distribution and changes with the user settings, confirming the possible occurrence of temporal color artifacts. Optical lock-in spectrometry can be used to improve spectral and color measurements of solid-state lighting, opening new opportunities for laboratory and remote sensing applications. Other foreseeable applications of optical lock-in spectrometry are also presented.","PeriodicalId":49911,"journal":{"name":"Leukos","volume":"172 1","pages":"146 - 164"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukos","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15502724.2022.2077754","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT This paper presents a study of the spectral characteristics of temporal light modulation in several technologies of lighting products. An optical lock-in spectrometer was designed for this purpose and integrated in a spectral radiant flux measurement facility. It was applied to incandescent and fluorescent lamps, as well as lamps based on white phosphor-converted LEDs and tunable RGB LEDs. The results are well correlated with the light emission processes of each technology. For incandescent lamps, the spectral modulation follows a 1/λ relationship in agreement with the blackbody radiation laws. Measurements performed on halophosphate and tri-phosphor tubes agree well with published data. The modulation and phase spectra of fluorescent lamps reveal a variable modulation rate across the visible range, directly related to the fluorescence lifetimes of the different luminophores, which were estimated from our data using a model of single exponential decay.The spectral modulation of white phosphor-converted LED lamps is nearly constant across the visible spectrum, demonstrating that their color parameters can be assessed from the lock-in modulation amplitude spectrum. In the case of tunable RGB LED lamps using PWM, the spectral modulation widely differs from the steady-state spectral distribution and changes with the user settings, confirming the possible occurrence of temporal color artifacts. Optical lock-in spectrometry can be used to improve spectral and color measurements of solid-state lighting, opening new opportunities for laboratory and remote sensing applications. Other foreseeable applications of optical lock-in spectrometry are also presented.
期刊介绍:
The Illuminating Engineering Society of North America and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, The Illuminating Engineering Society of North America and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by The Illuminating Engineering Society of North America and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. The Illuminating Engineering Society of North America and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .