Bimodules of Banach Space Nest Algebras

Lu'is Duarte, L. Oliveira
{"title":"Bimodules of Banach Space Nest Algebras","authors":"Lu'is Duarte, L. Oliveira","doi":"10.1093/QMATH/HAAB028","DOIUrl":null,"url":null,"abstract":"We extend to Banach space nest algebras the theory of essential supports and support function pairs of their bimodules, thereby obtaining Banach space counterparts of long established results for Hilbert space nest algebras. Namely, given a Banach space nest algebra $\\mathcal A$, we charaterise the maximal and the minimal $\\mathcal A$-bimodules having a given essential support function or support function pair. These characterisations are complete except for the minimal $\\mathcal A$-bimodule corresponding to a support function pair, in which case we make some headway. \nWe also show that the weakly closed bimodules of a Banach space nest algebra are exactly those that are reflexive operator spaces. To this end, we crucially prove that reflexive bimodules determine uniquely a certain class of admissible support functions.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/QMATH/HAAB028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend to Banach space nest algebras the theory of essential supports and support function pairs of their bimodules, thereby obtaining Banach space counterparts of long established results for Hilbert space nest algebras. Namely, given a Banach space nest algebra $\mathcal A$, we charaterise the maximal and the minimal $\mathcal A$-bimodules having a given essential support function or support function pair. These characterisations are complete except for the minimal $\mathcal A$-bimodule corresponding to a support function pair, in which case we make some headway. We also show that the weakly closed bimodules of a Banach space nest algebra are exactly those that are reflexive operator spaces. To this end, we crucially prove that reflexive bimodules determine uniquely a certain class of admissible support functions.
Banach空间巢代数的双模
将其双模的基本支持理论及其支持函数对推广到Banach空间巢代数中,从而得到Hilbert空间巢代数长期建立结果的Banach空间对应物。也就是说,给定一个Banach空间巢代数$\mathcal a $,我们刻画了具有给定本质支持函数或支持函数对的最大和最小$\mathcal a $-双模。除了与支持函数对对应的最小的数学A -双模之外,这些特征都是完整的,在这种情况下,我们取得了一些进展。我们还证明了Banach空间巢代数的弱闭双模正是那些自反算子空间。为此,我们关键地证明了自反双模唯一地决定了一类可容许的支持函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信