{"title":"Measuring the Brittle-to-Ductile Transition Temperature of Tungsten-Tantalum Alloy Using Chevron-Notched Micro-Cantilevers","authors":"B. Li, T. Marrow, David J Armstrong","doi":"10.2139/ssrn.3513127","DOIUrl":null,"url":null,"abstract":"High-temperature micro-fracture tests of an industrial grade W-1%Ta alloy were performed from room temperature up to 700 °C, using chevron-notched micro-cantilevers. A gradual increase of conditional fracture toughness (KQc) was measured with increasing temperature, and a microscale brittle-to-ductile transition temperature was found at ~600 °C. This is slightly higher than macroscopic four-point bending tests from the same material (~400 °C), and contradicts most literatures for pure tungsten that shows a significant lower micro-BDTT. The results suggested that dislocation motion should be independent of the specimen size. It is concluded that the higher micro-BDTT is due to tantalum in this alloy.","PeriodicalId":7765,"journal":{"name":"AMI: Scripta Materialia","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Scripta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3513127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature micro-fracture tests of an industrial grade W-1%Ta alloy were performed from room temperature up to 700 °C, using chevron-notched micro-cantilevers. A gradual increase of conditional fracture toughness (KQc) was measured with increasing temperature, and a microscale brittle-to-ductile transition temperature was found at ~600 °C. This is slightly higher than macroscopic four-point bending tests from the same material (~400 °C), and contradicts most literatures for pure tungsten that shows a significant lower micro-BDTT. The results suggested that dislocation motion should be independent of the specimen size. It is concluded that the higher micro-BDTT is due to tantalum in this alloy.