Measuring the Brittle-to-Ductile Transition Temperature of Tungsten-Tantalum Alloy Using Chevron-Notched Micro-Cantilevers

B. Li, T. Marrow, David J Armstrong
{"title":"Measuring the Brittle-to-Ductile Transition Temperature of Tungsten-Tantalum Alloy Using Chevron-Notched Micro-Cantilevers","authors":"B. Li, T. Marrow, David J Armstrong","doi":"10.2139/ssrn.3513127","DOIUrl":null,"url":null,"abstract":"High-temperature micro-fracture tests of an industrial grade W-1%Ta alloy were performed from room temperature up to 700 °C, using chevron-notched micro-cantilevers. A gradual increase of conditional fracture toughness (KQc) was measured with increasing temperature, and a microscale brittle-to-ductile transition temperature was found at ~600 °C. This is slightly higher than macroscopic four-point bending tests from the same material (~400 °C), and contradicts most literatures for pure tungsten that shows a significant lower micro-BDTT. The results suggested that dislocation motion should be independent of the specimen size. It is concluded that the higher micro-BDTT is due to tantalum in this alloy.","PeriodicalId":7765,"journal":{"name":"AMI: Scripta Materialia","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Scripta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3513127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature micro-fracture tests of an industrial grade W-1%Ta alloy were performed from room temperature up to 700 °C, using chevron-notched micro-cantilevers. A gradual increase of conditional fracture toughness (KQc) was measured with increasing temperature, and a microscale brittle-to-ductile transition temperature was found at ~600 °C. This is slightly higher than macroscopic four-point bending tests from the same material (~400 °C), and contradicts most literatures for pure tungsten that shows a significant lower micro-BDTT. The results suggested that dislocation motion should be independent of the specimen size. It is concluded that the higher micro-BDTT is due to tantalum in this alloy.
用刻槽微悬臂梁测量钨钽合金脆-韧转变温度
对一种工业级W-1%Ta合金进行了室温至700℃的高温微断裂试验,试验采用了v形缺口微悬臂梁。随着温度的升高,试样的条件断裂韧性(KQc)逐渐增大,在~600℃出现了微尺度的脆-韧转变温度。这比同样材料(~400°C)的宏观四点弯曲测试略高,并且与大多数纯钨的微bdtt明显较低的文献相矛盾。结果表明,位错运动与试样尺寸无关。结果表明,该合金的微bdtt较高是由于钽元素的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信