Pengjie Wang, Z. Gong, S. Lee, Y. Shou, Y. Geng, C. Jeon, I. J. Kim, H. W. Lee, J. W. Yoon, J. Sung, S. Lee, Defeng Kong, Jianbo Liu, Z. Mei, Zhengxuan Cao, Z. Pan, I. Choi, Xueqing Yan, C. Nam, Wenjun Ma
{"title":"Super-Heavy Ions Acceleration Driven by Ultrashort Laser Pulses at Ultrahigh Intensity","authors":"Pengjie Wang, Z. Gong, S. Lee, Y. Shou, Y. Geng, C. Jeon, I. J. Kim, H. W. Lee, J. W. Yoon, J. Sung, S. Lee, Defeng Kong, Jianbo Liu, Z. Mei, Zhengxuan Cao, Z. Pan, I. Choi, Xueqing Yan, C. Nam, Wenjun Ma","doi":"10.1103/PhysRevX.11.021049","DOIUrl":null,"url":null,"abstract":"The acceleration of super-heavy ions (SHIs) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic waiting for breakthrough. The detecting and controlling of the ionization process, and the adoption of the optimal acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrashort laser pulses (22 fs) at the intensity of 10^22 W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge state distributions of Au ions abundant at the charge state of 51+ and reaching up to 61+. The measured charge state distributions supported by 2D particle-in-cell simulations serves as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter for the acceleration of Au ions over the pulse duration. The use of double-layer targets results in a prolongation of the acceleration time without sacrificing the strength of acceleration field, which is highly favorable for the generation of high-energy super heavy ions.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevX.11.021049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The acceleration of super-heavy ions (SHIs) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic waiting for breakthrough. The detecting and controlling of the ionization process, and the adoption of the optimal acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrashort laser pulses (22 fs) at the intensity of 10^22 W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge state distributions of Au ions abundant at the charge state of 51+ and reaching up to 61+. The measured charge state distributions supported by 2D particle-in-cell simulations serves as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter for the acceleration of Au ions over the pulse duration. The use of double-layer targets results in a prolongation of the acceleration time without sacrificing the strength of acceleration field, which is highly favorable for the generation of high-energy super heavy ions.