Yeonam Yoon, Kyoungtae Lee, Sungjin Hong, Xiyuan Tang, Long Chen, Nan Sun
{"title":"A 0.04-mm2 0.9-mW 71-dB SNDR distributed modular AS ADC with VCO-based integrator and digital DAC calibration","authors":"Yeonam Yoon, Kyoungtae Lee, Sungjin Hong, Xiyuan Tang, Long Chen, Nan Sun","doi":"10.1109/CICC.2015.7338461","DOIUrl":null,"url":null,"abstract":"This paper presents a low-power and small-area VCO-based closed-loop ΔΣ ADC with two highlights. First, the ADC has a distributed modular architecture. It consists of repetitive slices, which simplifies both schematic and layout design. It allows the ADC to be easily reconfigured for other resolution specifications. Second, a novel digital DAC mismatch calibration technique is proposed. It has low hardware complexity by taking advantage of the intrinsic clocked averaging (CLA) capability of dual VCO-based integrator. It ensures high linearity in the presence of large DAC mismatches. A prototype ADC in 130nm CMOS occupies only 0.04mm2. It achieves 71dB SNDR over 1.7MHz BW while sampling at 250MS/s and consuming 0.9mW under a 1.2V supply.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"74 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper presents a low-power and small-area VCO-based closed-loop ΔΣ ADC with two highlights. First, the ADC has a distributed modular architecture. It consists of repetitive slices, which simplifies both schematic and layout design. It allows the ADC to be easily reconfigured for other resolution specifications. Second, a novel digital DAC mismatch calibration technique is proposed. It has low hardware complexity by taking advantage of the intrinsic clocked averaging (CLA) capability of dual VCO-based integrator. It ensures high linearity in the presence of large DAC mismatches. A prototype ADC in 130nm CMOS occupies only 0.04mm2. It achieves 71dB SNDR over 1.7MHz BW while sampling at 250MS/s and consuming 0.9mW under a 1.2V supply.