A. Chaytor, W. L. Marsh, I. R. Hutcheson, T. Griffith
{"title":"Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions.","authors":"A. Chaytor, W. L. Marsh, I. R. Hutcheson, T. Griffith","doi":"10.3109/10623320009072213","DOIUrl":null,"url":null,"abstract":"The vascular actions of the lipophilic gap junction inhibitors 18alpha-glycyrrhetinic acid (18alpha-GA), 18beta-glycyrrhetinic acid (18beta-GA) and the water-soluble hemisuccinate derivative of 18beta-GA, carbenoxolone, were investigated in preconstricted rings of rabbit superior mesenteric artery. EDHF-type relaxations to acetylcholine (ACh), observed in the presence of 300 microM NG-nitro-L-arginine methyl ester (L-NAME) and 10 microM indomethacin, were attenuated by preincubation with 18alpha-GA (to 100 microM), 18A-GA (to 10 microM) or carbenoxolone (to 300 microM) in a concentration-dependent fashion. By contrast, none of these agents affected responses to sodium nitroprusside, an exogeneous source of NO, and relaxations evoked by ACh in the absence of L-NAME were attenuated by only approximately 20%. 18alpha-GA exerted no direct effect on vessel tone, whereas 18beta-GA and carbenoxolone caused relaxations which were maximal at approximately 1 and approximately 10 mM, respectively. Relaxations to carbenoxolone were attenuated by endothelial denudation and by incubation with L-NAME, whereas those to 18beta-GA were unaffected. In conclusion, all three agents inhibit EDHF-type relaxations evoked by ACh, providing further evidence for the involvement of gap junctions in such responses. Unlike 18alpha-GA, carbenoxolone and 18beta-GA possess intrinsic vasorelaxant activity which in the case of carbenoxolone involves functional enhancement of NO activity in addition to direct effects on vascular smooth muscle.","PeriodicalId":11588,"journal":{"name":"Endothelium-journal of Endothelial Cell Research","volume":"1 1","pages":"265-78"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium-journal of Endothelial Cell Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10623320009072213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
The vascular actions of the lipophilic gap junction inhibitors 18alpha-glycyrrhetinic acid (18alpha-GA), 18beta-glycyrrhetinic acid (18beta-GA) and the water-soluble hemisuccinate derivative of 18beta-GA, carbenoxolone, were investigated in preconstricted rings of rabbit superior mesenteric artery. EDHF-type relaxations to acetylcholine (ACh), observed in the presence of 300 microM NG-nitro-L-arginine methyl ester (L-NAME) and 10 microM indomethacin, were attenuated by preincubation with 18alpha-GA (to 100 microM), 18A-GA (to 10 microM) or carbenoxolone (to 300 microM) in a concentration-dependent fashion. By contrast, none of these agents affected responses to sodium nitroprusside, an exogeneous source of NO, and relaxations evoked by ACh in the absence of L-NAME were attenuated by only approximately 20%. 18alpha-GA exerted no direct effect on vessel tone, whereas 18beta-GA and carbenoxolone caused relaxations which were maximal at approximately 1 and approximately 10 mM, respectively. Relaxations to carbenoxolone were attenuated by endothelial denudation and by incubation with L-NAME, whereas those to 18beta-GA were unaffected. In conclusion, all three agents inhibit EDHF-type relaxations evoked by ACh, providing further evidence for the involvement of gap junctions in such responses. Unlike 18alpha-GA, carbenoxolone and 18beta-GA possess intrinsic vasorelaxant activity which in the case of carbenoxolone involves functional enhancement of NO activity in addition to direct effects on vascular smooth muscle.