{"title":"RegRL-KG: Learning an L1 regularized reinforcement agent for keyphrase generation","authors":"Yu Yao, Peng Yang, Guangzhen Zhao, Juncheng Leng","doi":"10.3233/ida-226561","DOIUrl":null,"url":null,"abstract":"Keyphrase generation (KG) aims at condensing the content from the source text to the target concise phrases. Though many KG algorithms have been proposed, most of them are tailored into deep learning settings with various specially designed strategies and may fail in solving the bias exposure problem. Reinforcement Learning (RL), a class of control optimization techniques, are well suited to compensate for some of the limitations of deep learning methods. Nevertheless, RL methods typically suffer from four core difficulties in keyphrase generation: environment interaction and effective exploration, complex action control, reward design, and task-specific obstacle. To tackle this difficult but significant task, we present RegRL-KG, including actor-critic based-reinforcement learning control and L1 policy regularization under the first principle of minimizing the maximum likelihood estimation (MLE) criterion by a sequence-to-sequence (Seq2Seq) deep learnining model, for efficient keyphrase generation. The agent utilizes an actor-critic network to control the generated probability distribution and employs L1 policy regularization to solve the bias exposure problem. Extensive experiments show that our method brings improvement in terms of the evaluation metrics on five scientific article benchmark datasets.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"104 1","pages":"1003-1021"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-226561","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Keyphrase generation (KG) aims at condensing the content from the source text to the target concise phrases. Though many KG algorithms have been proposed, most of them are tailored into deep learning settings with various specially designed strategies and may fail in solving the bias exposure problem. Reinforcement Learning (RL), a class of control optimization techniques, are well suited to compensate for some of the limitations of deep learning methods. Nevertheless, RL methods typically suffer from four core difficulties in keyphrase generation: environment interaction and effective exploration, complex action control, reward design, and task-specific obstacle. To tackle this difficult but significant task, we present RegRL-KG, including actor-critic based-reinforcement learning control and L1 policy regularization under the first principle of minimizing the maximum likelihood estimation (MLE) criterion by a sequence-to-sequence (Seq2Seq) deep learnining model, for efficient keyphrase generation. The agent utilizes an actor-critic network to control the generated probability distribution and employs L1 policy regularization to solve the bias exposure problem. Extensive experiments show that our method brings improvement in terms of the evaluation metrics on five scientific article benchmark datasets.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.