A quantum invariant of links in T2× I with volume conjecture behavior

IF 0.6 3区 数学 Q3 MATHEMATICS
Joseph Boninger
{"title":"A quantum invariant of links in T2× I with\nvolume conjecture behavior","authors":"Joseph Boninger","doi":"10.2140/agt.2023.23.1891","DOIUrl":null,"url":null,"abstract":"We define a polynomial invariant $J_n^T$ of links in the thickened torus. We call $J^T_n$ the $n$th toroidal colored Jones polynomial, and show it satisfies many properties of the original colored Jones polynomial. Most significantly, $J_n^T$ exhibits volume conjecture behavior. We prove the volume conjecture for the 2-by-2 square weave, and provide computational evidence for other links. We also give two equivalent constructions of $J_n^T,$ one using operator invariants and another using the Kauffman bracket skein module of the torus. In the process we generalize the theory of operator invariants to links in $T^2 \\times I$, defining what we call a pseudo-operator invariant.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.1891","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define a polynomial invariant $J_n^T$ of links in the thickened torus. We call $J^T_n$ the $n$th toroidal colored Jones polynomial, and show it satisfies many properties of the original colored Jones polynomial. Most significantly, $J_n^T$ exhibits volume conjecture behavior. We prove the volume conjecture for the 2-by-2 square weave, and provide computational evidence for other links. We also give two equivalent constructions of $J_n^T,$ one using operator invariants and another using the Kauffman bracket skein module of the torus. In the process we generalize the theory of operator invariants to links in $T^2 \times I$, defining what we call a pseudo-operator invariant.
具有体积猜想行为的t2xi中链路的量子不变量
我们定义了加厚环面中连杆的多项式不变量$J_n^T$。我们称J^T_n$为第n个环面有色琼斯多项式,并证明它满足原有色琼斯多项式的许多性质。最重要的是,$J_n^T$表现出体积猜想行为。我们证明了2 × 2方编织的体积猜想,并为其他环节提供了计算证据。我们还给出了J_n^T的两个等价结构,一个使用算子不变量,另一个使用环面的Kauffman括号串模。在此过程中,我们将算子不变量理论推广到$T^2 \ * I$中的链接,定义了我们所谓的伪算子不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信