On regularity bounds and linear resolutions of toric algebras of graphs

IF 0.3 4区 数学 Q4 MATHEMATICS
Rimpa Nandi, Ramakrishna Nanduri
{"title":"On regularity bounds and linear resolutions of toric algebras of graphs","authors":"Rimpa Nandi, Ramakrishna Nanduri","doi":"10.1216/jca.2022.14.285","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph. In this article we show that if G is connected and R(I(G)) is normal, then reg(R(I(G))) ≤ α0(G), where α0(G) the vertex cover number of G. As a consequence, every normal König connected graph G, reg(R(I(G))) = mat(G), the matching number of G. For a gap-free graph G, we give various combinatorial upper bounds for reg(R(I(G))). As a consequence we give various sufficient conditions for the equality of reg(R(I(G))) and mat(G). Finally we show that if G is a chordal graph such that K[G] has q-linear resolution (q ≥ 4), then K[G] is a hypersurface, which proves the conjecture of Hibi-Matsuda-Tsuchiya [12, Conjecture 0.2], affirmatively for chordal graphs.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"9 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.285","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let G be a simple graph. In this article we show that if G is connected and R(I(G)) is normal, then reg(R(I(G))) ≤ α0(G), where α0(G) the vertex cover number of G. As a consequence, every normal König connected graph G, reg(R(I(G))) = mat(G), the matching number of G. For a gap-free graph G, we give various combinatorial upper bounds for reg(R(I(G))). As a consequence we give various sufficient conditions for the equality of reg(R(I(G))) and mat(G). Finally we show that if G is a chordal graph such that K[G] has q-linear resolution (q ≥ 4), then K[G] is a hypersurface, which proves the conjecture of Hibi-Matsuda-Tsuchiya [12, Conjecture 0.2], affirmatively for chordal graphs.
图的环代数的正则界和线性分辨
设G是一个简单的图。本文证明了如果G是连通的,R(I(G))是正规的,则reg(R(I(G)))≤α0(G),其中α0(G)是G的顶点覆盖数。因此,对于无间隙图G,我们给出了reg(R(I(G)))的各种组合上界,每个正规König连通图G, reg(R(I(G))) = mat(G), G的匹配数。因此,我们给出了reg(R(I(G)))和mat(G)相等的各种充分条件。最后,我们证明了如果G是一个弦图,使得K[G]具有q-线性分辨率(q≥4),则K[G]是一个超曲面,从而肯定地证明了Hibi-Matsuda-Tsuchiya[12,猜想0.2]对于弦图的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信