{"title":"Le peigne à Dirac et la brosse à Bezout","authors":"André Unterberger","doi":"10.1016/S0764-4442(01)02134-6","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a distribution on <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span>, invariant under the linear action on <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span> of the group <span><math><mtext>Γ=</mtext><mtext>SL</mtext><mtext>(2,</mtext><mtext>Z</mtext><mtext>)</mtext></math></span>, whose decomposition into homogeneous terms depends on all non-holomorphic modular forms for the group <em>Γ</em>, and which plays a major role in the automorphic Weyl calculus.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 629-634"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02134-6","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We construct a distribution on , invariant under the linear action on of the group , whose decomposition into homogeneous terms depends on all non-holomorphic modular forms for the group Γ, and which plays a major role in the automorphic Weyl calculus.