Censored regression system identification based on the least mean M-estimate algorithm

Gen Wang, Haiquan Zhao
{"title":"Censored regression system identification based on the least mean M-estimate algorithm","authors":"Gen Wang, Haiquan Zhao","doi":"10.1109/ICIEA51954.2021.9516208","DOIUrl":null,"url":null,"abstract":"Classical adaptive algorithms have good convergence performance in linear regression system identification. However, they will face performance degradation while dealing with censored data since only incomplete information can be obtained. In this paper, the least mean M-estimate algorithm for censored regression (CR-LMM) is proposed for the robust parameter estimation. To compensate for the bias caused by censored observation, the probit regression model is employed to derive the estimated error for constructing the M-estimate cost function. The cost function can expel the adverse impact of the impulsive noise, and it is solved by the unconstrained optimization method. Computer simulations in the impulsive environment are carried out to demonstrate that the proposed CR-LMM algorithm exhibits better convergence performance than the existing algorithms in censored regression system identification scenarios.","PeriodicalId":6809,"journal":{"name":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","volume":"47 1","pages":"1176-1180"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA51954.2021.9516208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classical adaptive algorithms have good convergence performance in linear regression system identification. However, they will face performance degradation while dealing with censored data since only incomplete information can be obtained. In this paper, the least mean M-estimate algorithm for censored regression (CR-LMM) is proposed for the robust parameter estimation. To compensate for the bias caused by censored observation, the probit regression model is employed to derive the estimated error for constructing the M-estimate cost function. The cost function can expel the adverse impact of the impulsive noise, and it is solved by the unconstrained optimization method. Computer simulations in the impulsive environment are carried out to demonstrate that the proposed CR-LMM algorithm exhibits better convergence performance than the existing algorithms in censored regression system identification scenarios.
基于最小均值m估计算法的截尾回归系统辨识
经典自适应算法在线性回归系统辨识中具有良好的收敛性能。然而,由于只能获得不完整的信息,它们在处理审查数据时将面临性能下降的问题。本文提出了截短回归的最小均值m估计算法(CR-LMM),用于鲁棒参数估计。为了补偿截尾观测造成的偏差,采用概率回归模型推导估计误差,构造m估计代价函数。成本函数可以排除脉冲噪声的不利影响,并采用无约束优化方法进行求解。在脉冲环境下的计算机仿真结果表明,本文提出的CR-LMM算法在删检回归系统辨识场景下具有比现有算法更好的收敛性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信