{"title":"Embeddability in R3 is NP-hard","authors":"A. D. Mesmay, Y. Rieck, E. Sedgwick, M. Tancer","doi":"10.1145/3396593","DOIUrl":null,"url":null,"abstract":"We prove that the problem of deciding whether a two- or three-dimensional simplicial complex embeds into R3 is NP-hard. Our construction also shows that deciding whether a 3-manifold with boundary tori admits an S3 filling is NP-hard. The former stands in contrast with the lower-dimensional cases, which can be solved in linear time, and the latter with a variety of computational problems in 3-manifold topology, for example, unknot or 3-sphere recognition, which are in NP ∩ co- NP. (Membership of the latter problem in co-NP assumes the Generalized Riemann Hypotheses.) Our reduction encodes a satisfiability instance into the embeddability problem of a 3-manifold with boundary tori, and relies extensively on techniques from low-dimensional topology, most importantly Dehn fillings of manifolds with boundary tori.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"2 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We prove that the problem of deciding whether a two- or three-dimensional simplicial complex embeds into R3 is NP-hard. Our construction also shows that deciding whether a 3-manifold with boundary tori admits an S3 filling is NP-hard. The former stands in contrast with the lower-dimensional cases, which can be solved in linear time, and the latter with a variety of computational problems in 3-manifold topology, for example, unknot or 3-sphere recognition, which are in NP ∩ co- NP. (Membership of the latter problem in co-NP assumes the Generalized Riemann Hypotheses.) Our reduction encodes a satisfiability instance into the embeddability problem of a 3-manifold with boundary tori, and relies extensively on techniques from low-dimensional topology, most importantly Dehn fillings of manifolds with boundary tori.