Embeddability in R3 is NP-hard

A. D. Mesmay, Y. Rieck, E. Sedgwick, M. Tancer
{"title":"Embeddability in R3 is NP-hard","authors":"A. D. Mesmay, Y. Rieck, E. Sedgwick, M. Tancer","doi":"10.1145/3396593","DOIUrl":null,"url":null,"abstract":"We prove that the problem of deciding whether a two- or three-dimensional simplicial complex embeds into R3 is NP-hard. Our construction also shows that deciding whether a 3-manifold with boundary tori admits an S3 filling is NP-hard. The former stands in contrast with the lower-dimensional cases, which can be solved in linear time, and the latter with a variety of computational problems in 3-manifold topology, for example, unknot or 3-sphere recognition, which are in NP ∩ co- NP. (Membership of the latter problem in co-NP assumes the Generalized Riemann Hypotheses.) Our reduction encodes a satisfiability instance into the embeddability problem of a 3-manifold with boundary tori, and relies extensively on techniques from low-dimensional topology, most importantly Dehn fillings of manifolds with boundary tori.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"2 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We prove that the problem of deciding whether a two- or three-dimensional simplicial complex embeds into R3 is NP-hard. Our construction also shows that deciding whether a 3-manifold with boundary tori admits an S3 filling is NP-hard. The former stands in contrast with the lower-dimensional cases, which can be solved in linear time, and the latter with a variety of computational problems in 3-manifold topology, for example, unknot or 3-sphere recognition, which are in NP ∩ co- NP. (Membership of the latter problem in co-NP assumes the Generalized Riemann Hypotheses.) Our reduction encodes a satisfiability instance into the embeddability problem of a 3-manifold with boundary tori, and relies extensively on techniques from low-dimensional topology, most importantly Dehn fillings of manifolds with boundary tori.
R3中的嵌入性是np困难的
我们证明了决定一个二维或三维简单复合体是否嵌入到R3中的问题是np困难的。我们的构造还表明,决定具有边界环面的3流形是否允许S3填充是np困难的。前者与低维情况相反,前者可以在线性时间内解决,后者则与NP∩co- NP中的各种3流形拓扑计算问题相反,例如解结或3球识别。(后一个问题在co-NP中的隶属性以广义黎曼假设为前提。)我们的约简将可满足性实例编码为具有边界环面的3-流形的可嵌入性问题,并广泛依赖于低维拓扑技术,最重要的是具有边界环面的流形的Dehn填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信