Boshen Liang, G. Keulemans, Dominika Wys o cka, Lei Zhang, V. Rochus, T. Stakenborg, P. Heremans, D. Cheyns
{"title":"Metalized Soft Polymers for Electromechanical Transducers on Glass Substrates","authors":"Boshen Liang, G. Keulemans, Dominika Wys o cka, Lei Zhang, V. Rochus, T. Stakenborg, P. Heremans, D. Cheyns","doi":"10.1109/Transducers50396.2021.9495385","DOIUrl":null,"url":null,"abstract":"In this study, two different semiconductor-grade polymers are utilized to build up membrane-based electromechanical transducers. With three to four orders of magnitude lower modulus in comparison with silicon, the use of polymers as the vibrating membrane improves the mechanical output characteristics where larger vibration amplitude is needed. Novel processing methods, including an excimer laser-aided wafer-to-water transferring technique, have been developed for the introduction of polymers into the standard cleanroom fabrication environment. Both piezoelectric and electrostatic transducers are fabricated on glass substrates and then characterized with laser dropper velocimetry. Comparison is made to exemplify the advantages and disadvantages of using polymers with varied dynamic specifications for different applications, where the compromise between fabrication robustness and device performance is needed.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"35 1","pages":"623-626"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, two different semiconductor-grade polymers are utilized to build up membrane-based electromechanical transducers. With three to four orders of magnitude lower modulus in comparison with silicon, the use of polymers as the vibrating membrane improves the mechanical output characteristics where larger vibration amplitude is needed. Novel processing methods, including an excimer laser-aided wafer-to-water transferring technique, have been developed for the introduction of polymers into the standard cleanroom fabrication environment. Both piezoelectric and electrostatic transducers are fabricated on glass substrates and then characterized with laser dropper velocimetry. Comparison is made to exemplify the advantages and disadvantages of using polymers with varied dynamic specifications for different applications, where the compromise between fabrication robustness and device performance is needed.