An index of capability for bivariate zero-inflated processes

Surajit Pal, S. Gauri
{"title":"An index of capability for bivariate zero-inflated processes","authors":"Surajit Pal, S. Gauri","doi":"10.4314/ijest.v14i4.1","DOIUrl":null,"url":null,"abstract":"Rapid technological advancement and implementation of automation and computerization in today's manufacturing set up resulted in many high quality processes, where defects are rarely observed. There are many high quality manufacturing processes where two or more types of defects may be generated from different types of equipment/process problems. The zeroinflated defects data containing two types of defects are commonly modeled by bivariate zero-inflated (BZI) Poisson distribution. Pal and Gauri (2022a) proposed a methodology for measuring capability of a BZI Poisson process. However, they ignored the count of zero defect (ZD) products produced in a BZI process. Because of that, Pal and Gauri (2022a) proposed approach fails to discriminate the BZI processes which produces different proportions of ZD units but having almost the same proportion of nonconforming items with respect to the USL of combined number of defects or USLs of individual defect types. In this paper, a new measure of process capability for BZI processes is proposed that can truly discriminate different BZI processes taking into account the USL of combined number of defects (or USLs of individual defect types) as well as the proportion of ZD units produced in these processes. The proposed methodology is illustrated using two case studies. The results of the case studies show that the proposed index well represents the true capability of BZI processes.","PeriodicalId":14145,"journal":{"name":"International journal of engineering science and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/ijest.v14i4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid technological advancement and implementation of automation and computerization in today's manufacturing set up resulted in many high quality processes, where defects are rarely observed. There are many high quality manufacturing processes where two or more types of defects may be generated from different types of equipment/process problems. The zeroinflated defects data containing two types of defects are commonly modeled by bivariate zero-inflated (BZI) Poisson distribution. Pal and Gauri (2022a) proposed a methodology for measuring capability of a BZI Poisson process. However, they ignored the count of zero defect (ZD) products produced in a BZI process. Because of that, Pal and Gauri (2022a) proposed approach fails to discriminate the BZI processes which produces different proportions of ZD units but having almost the same proportion of nonconforming items with respect to the USL of combined number of defects or USLs of individual defect types. In this paper, a new measure of process capability for BZI processes is proposed that can truly discriminate different BZI processes taking into account the USL of combined number of defects (or USLs of individual defect types) as well as the proportion of ZD units produced in these processes. The proposed methodology is illustrated using two case studies. The results of the case studies show that the proposed index well represents the true capability of BZI processes.
二元零膨胀过程的能力指标
在今天的制造业中,快速的技术进步和自动化和计算机化的实施导致了许多高质量的过程,其中很少观察到缺陷。在许多高质量的制造过程中,两种或两种以上的缺陷可能是由不同类型的设备/工艺问题产生的。包含两类缺陷的零膨胀缺陷数据通常采用二元零膨胀泊松分布建模。Pal和Gauri (2022a)提出了一种测量BZI泊松过程能力的方法。然而,他们忽略了在BZI过程中生产的零缺陷(ZD)产品的数量。因此,Pal和Gauri (2022a)提出的方法无法区分产生不同比例的ZD单元,但相对于缺陷总数的USL或单个缺陷类型的USL而言,不合格项目的比例几乎相同的BZI过程。在本文中,提出了一种新的BZI过程能力度量方法,该方法可以考虑缺陷总数的USL(或单个缺陷类型的USL)以及在这些过程中产生的ZD单元的比例,从而真正区分不同的BZI过程。提出的方法是用两个案例研究说明。实例分析结果表明,该指标能较好地反映BZI过程的真实能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信