Effect of Organic / Inorganic Gate Materials on the Organic Field-Effect Transistors Performance

Zainab N.Hashim, Estabraq T. Abdullah
{"title":"Effect of Organic / Inorganic Gate Materials on the Organic Field-Effect Transistors Performance","authors":"Zainab N.Hashim, Estabraq T. Abdullah","doi":"10.30723/ijp.v21i2.1113","DOIUrl":null,"url":null,"abstract":"The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To model and analyze a device's electrical properties, MATLAB was used. Two main parameters were studied: switching ratio (Ion/Ioff) and subthreshold swing (SS), as well as the effect of dielectric capacitance on the gate dielectric materials. The PVA/HfO2 bilayer gate dielectric gave the best results in Ion/Ioff ratio, SS and transconductance of 9.05´10-7, -1.52, and -4.99 x10-5A/V respectively, which is because the dielectric capacitance has increased.","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v21i2.1113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To model and analyze a device's electrical properties, MATLAB was used. Two main parameters were studied: switching ratio (Ion/Ioff) and subthreshold swing (SS), as well as the effect of dielectric capacitance on the gate dielectric materials. The PVA/HfO2 bilayer gate dielectric gave the best results in Ion/Ioff ratio, SS and transconductance of 9.05´10-7, -1.52, and -4.99 x10-5A/V respectively, which is because the dielectric capacitance has increased.
有机/无机栅极材料对有机场效应晶体管性能的影响
栅极介电材料的选择是有机场效应晶体管(OFET)、集成电路和一些电子应用的基础。OFET的工作取决于两个基本参数:半导体层和栅极之间的绝缘和绝缘体的电容。本文研究了一种顶部触点/底部栅极的五苯基OFET的电学行为。选择有机聚乙烯醇(PVA)和无机氧化铪(HfO2)作为栅极介电材料,以降低工作电压,实现下一代电子应用。本文研究了单层栅极绝缘子和双层栅极绝缘子对OFET性能的影响。为了对器件的电性能进行建模和分析,使用了MATLAB。研究了两个主要参数:开关比(Ion/Ioff)和亚阈值摆幅(SS),以及介电容量对栅极介质材料的影响。PVA/HfO2双层栅极电介质在离子/ off比、SS和跨导方面表现最佳,分别为9.05 × 10-7、-1.52和-4.99 × 10- 5a /V,这是由于介质电容增加所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信