{"title":"Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago","authors":"Thomas Plocoste, Adarsh Sankaran","doi":"10.3390/earth4010008","DOIUrl":null,"url":null,"abstract":"In this paper, the wind direction (WD) behaviour with respect to the variability of other meteorological parameters (i.e., rainfall (R), temperature (T), relative humidity (Rh), solar radiation (SR) and wind speed (U)) was studied in a multi-scale way. To carry out this study, the Hilbert–Huang transform (HHT) framework was applied to a Guadeloupe archipelago dataset from 2016 to 2021. Thus, the time-dependent intrinsic correlation (TDIC) analysis based on multivariate empirical mode decomposition (MEMD) was performed. For time scales between ∼3 days and ∼7 months, the localized positive and negative correlations between WD and the meteorological parameters have been identified. The alternation between these correlations was more significant for T and Rh. With regard to SR and U, there was a dominance of a negative correlation with WD. We assumed that the micro-climate previously identified in the literature for the study area plays a key role in these behaviours. A strong positive correlation between WD and R was found from ∼7 months to ∼2.5 years. At the annual scale, the relationships between WD and all meteorological parameters were long range and no significant transition in correlation was observed showing the impact of the Earth’s annual cycle on climatic variables. All these results clearly show the influence of R-T-Rh-SR-U on WD over different time scales.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/earth4010008","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, the wind direction (WD) behaviour with respect to the variability of other meteorological parameters (i.e., rainfall (R), temperature (T), relative humidity (Rh), solar radiation (SR) and wind speed (U)) was studied in a multi-scale way. To carry out this study, the Hilbert–Huang transform (HHT) framework was applied to a Guadeloupe archipelago dataset from 2016 to 2021. Thus, the time-dependent intrinsic correlation (TDIC) analysis based on multivariate empirical mode decomposition (MEMD) was performed. For time scales between ∼3 days and ∼7 months, the localized positive and negative correlations between WD and the meteorological parameters have been identified. The alternation between these correlations was more significant for T and Rh. With regard to SR and U, there was a dominance of a negative correlation with WD. We assumed that the micro-climate previously identified in the literature for the study area plays a key role in these behaviours. A strong positive correlation between WD and R was found from ∼7 months to ∼2.5 years. At the annual scale, the relationships between WD and all meteorological parameters were long range and no significant transition in correlation was observed showing the impact of the Earth’s annual cycle on climatic variables. All these results clearly show the influence of R-T-Rh-SR-U on WD over different time scales.
期刊介绍:
Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.