A wireless power transfer system with enhanced response and efficiency by fully-integrated fast-tracking wireless constant-idle-time control for implants

Cheng Huang, T. Kawajiri, H. Ishikuro
{"title":"A wireless power transfer system with enhanced response and efficiency by fully-integrated fast-tracking wireless constant-idle-time control for implants","authors":"Cheng Huang, T. Kawajiri, H. Ishikuro","doi":"10.1109/VLSIC.2016.7573491","DOIUrl":null,"url":null,"abstract":"In this paper, a 13.56 MHz fully-integrated wireless power transfer system with wireless constant-idle-time control is proposed. The massive off-chip components or wire required for transmitter (TX) voltage regulation in previous works are eliminated. Both wireless and local regulations are achieved with enhanced transient performance and total efficiency, and reduced circuitry and system design complexity. Thanks to the proposed wireless constant-idle-time control technique, an instant load-transient response, and a peak total efficiency of 67.6% with up to 13.7% improvement are observed in measurements with meat between coils at a distance of 6mm.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"28 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a 13.56 MHz fully-integrated wireless power transfer system with wireless constant-idle-time control is proposed. The massive off-chip components or wire required for transmitter (TX) voltage regulation in previous works are eliminated. Both wireless and local regulations are achieved with enhanced transient performance and total efficiency, and reduced circuitry and system design complexity. Thanks to the proposed wireless constant-idle-time control technique, an instant load-transient response, and a peak total efficiency of 67.6% with up to 13.7% improvement are observed in measurements with meat between coils at a distance of 6mm.
一种无线电力传输系统,通过全集成的快速跟踪无线恒空闲时间控制,增强了响应和效率
本文提出了一种13.56 MHz无线恒空控制全集成无线电力传输系统。消除了以前工作中发射机(TX)电压调节所需的大量片外元件或电线。通过增强瞬态性能和总效率,降低电路和系统设计复杂性,实现了无线和本地法规。由于所提出的无线恒空闲时间控制技术,即时负载瞬态响应和峰值总效率为67.6%,在线圈之间距离为6mm的测量中可观察到高达13.7%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信