Solvability of doubly nonlinear parabolic equation with p-laplacian

S. Uchida
{"title":"Solvability of doubly nonlinear parabolic equation with p-laplacian","authors":"S. Uchida","doi":"10.3934/eect.2021033","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a doubly nonlinear parabolic equation $ \\partial _t \\beta (u) - \\nabla \\cdot \\alpha (x , \\nabla u) \\ni f$ with the homogeneous Dirichlet boundary condition in a bounded domain, where $\\beta : \\mathbb{R} \\to 2 ^{ \\mathbb{R} }$ is a maximal monotone graph satisfying $0 \\in \\beta (0)$ and $ \\nabla \\cdot \\alpha (x , \\nabla u )$ stands for a generalized $p$-Laplacian. Existence of solution to the initial boundary value problem of this equation has been investigated in an enormous number of papers for the case where single-valuedness, coerciveness, or some growth condition is imposed on $\\beta $. However, there are a few results for the case where such assumptions are removed and it is difficult to construct an abstract theory which covers the case for $1 < p < 2$. Main purpose of this paper is to show the solvability of the initial boundary value problem for any $ p \\in (1, \\infty ) $ without any conditions for $\\beta $ except $0 \\in \\beta (0)$. We also discuss the uniqueness of solution by using properties of entropy solution.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/eect.2021033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a doubly nonlinear parabolic equation $ \partial _t \beta (u) - \nabla \cdot \alpha (x , \nabla u) \ni f$ with the homogeneous Dirichlet boundary condition in a bounded domain, where $\beta : \mathbb{R} \to 2 ^{ \mathbb{R} }$ is a maximal monotone graph satisfying $0 \in \beta (0)$ and $ \nabla \cdot \alpha (x , \nabla u )$ stands for a generalized $p$-Laplacian. Existence of solution to the initial boundary value problem of this equation has been investigated in an enormous number of papers for the case where single-valuedness, coerciveness, or some growth condition is imposed on $\beta $. However, there are a few results for the case where such assumptions are removed and it is difficult to construct an abstract theory which covers the case for $1 < p < 2$. Main purpose of this paper is to show the solvability of the initial boundary value problem for any $ p \in (1, \infty ) $ without any conditions for $\beta $ except $0 \in \beta (0)$. We also discuss the uniqueness of solution by using properties of entropy solution.
双非线性抛物型方程的p-拉普拉斯可解性
本文考虑一类双非线性抛物型方程 $ \partial _t \beta (u) - \nabla \cdot \alpha (x , \nabla u) \ni f$ 具有有界域上齐次Dirichlet边界条件,其中 $\beta : \mathbb{R} \to 2 ^{ \mathbb{R} }$ 极大单调图是否令人满意 $0 \in \beta (0)$ 和 $ \nabla \cdot \alpha (x , \nabla u )$ 代表广义的 $p$——拉普拉斯。在单值性、强制性或某些生长条件下,对该方程初边值问题解的存在性进行了大量的研究 $\beta $. 然而,有一些结果的情况下,这些假设被删除,这是很难构建一个抽象的理论涵盖的情况下 $1 < p < 2$. 本文的主要目的是证明任意方程的初边值问题的可解性 $ p \in (1, \infty ) $ 没有任何条件 $\beta $ 除了 $0 \in \beta (0)$. 并利用熵解的性质讨论了解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信