Viability of Azure IoT Hub for Processing High Velocity Large Scale IoT Data

Wajdi Halabi, Daniel N. Smith, J. Hill, Jason W. Anderson, Ken E. Kennedy, Brandon Posey, Linh Ngo, A. Apon
{"title":"Viability of Azure IoT Hub for Processing High Velocity Large Scale IoT Data","authors":"Wajdi Halabi, Daniel N. Smith, J. Hill, Jason W. Anderson, Ken E. Kennedy, Brandon Posey, Linh Ngo, A. Apon","doi":"10.1145/3447545.3451187","DOIUrl":null,"url":null,"abstract":"We utilize the Clemson supercomputer to generate a massive workload for testing the performance of Microsoft Azure IoT Hub. The workload emulates sensor data from a large manufacturing facility. We study the effects of message frequency, distribution, and size on round-trip latency for different IoT Hub configurations. Significant variation in latency occurs when the system exceeds IoT Hub specifications. The results are predictable and well-behaved for a well-engineered system and can meet soft real-time deadlines.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We utilize the Clemson supercomputer to generate a massive workload for testing the performance of Microsoft Azure IoT Hub. The workload emulates sensor data from a large manufacturing facility. We study the effects of message frequency, distribution, and size on round-trip latency for different IoT Hub configurations. Significant variation in latency occurs when the system exceeds IoT Hub specifications. The results are predictable and well-behaved for a well-engineered system and can meet soft real-time deadlines.
Azure物联网中心处理高速大规模物联网数据的可行性
我们利用克莱姆森超级计算机生成大量工作负载来测试微软Azure IoT Hub的性能。工作负载模拟来自大型制造工厂的传感器数据。我们研究了不同IoT Hub配置的消息频率、分布和大小对往返延迟的影响。当系统超过物联网集线器规格时,延迟会发生显著变化。对于一个设计良好的系统来说,结果是可预测的,并且表现良好,并且可以满足软实时截止日期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信