Generalized Carleson perturbations of elliptic operators and applications

J. Feneuil, Bruno Poggi
{"title":"Generalized Carleson perturbations of elliptic operators and applications","authors":"J. Feneuil, Bruno Poggi","doi":"10.1090/tran/8635","DOIUrl":null,"url":null,"abstract":"We extend in two directions the notion of perturbations of Carleson type for the Dirichlet problem associated to an elliptic real second-order divergence-form (possibly degenerate, not necessarily symmetric) elliptic operator. First, in addition to the classical perturbations of Carleson type, that we call additive Carleson perturbations, we introduce scalar-multiplicative and antisymmetric Carleson perturbations, which both allow non-trivial differences at the boundary. Second, we consider domains which admit an elliptic PDE in a broad sense: we count as examples the 1-sided NTA (a.k.a. uniform) domains satisfying the capacity density condition, the 1-sided chord-arc domains, the domains with low-dimensional Ahlfors-David regular boundaries, and certain domains with mixed-dimensional boundaries; thus our methods provide a unified perspective on the Carleson perturbation theory of elliptic operators. \nOur proofs do not introduce sawtooth domains or the extrapolation method. We also present several applications to some Dahlberg-Kenig-Pipher operators, free-boundary problems, and we provide a new characterization of $A_{\\infty}$ among elliptic measures.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We extend in two directions the notion of perturbations of Carleson type for the Dirichlet problem associated to an elliptic real second-order divergence-form (possibly degenerate, not necessarily symmetric) elliptic operator. First, in addition to the classical perturbations of Carleson type, that we call additive Carleson perturbations, we introduce scalar-multiplicative and antisymmetric Carleson perturbations, which both allow non-trivial differences at the boundary. Second, we consider domains which admit an elliptic PDE in a broad sense: we count as examples the 1-sided NTA (a.k.a. uniform) domains satisfying the capacity density condition, the 1-sided chord-arc domains, the domains with low-dimensional Ahlfors-David regular boundaries, and certain domains with mixed-dimensional boundaries; thus our methods provide a unified perspective on the Carleson perturbation theory of elliptic operators. Our proofs do not introduce sawtooth domains or the extrapolation method. We also present several applications to some Dahlberg-Kenig-Pipher operators, free-boundary problems, and we provide a new characterization of $A_{\infty}$ among elliptic measures.
椭圆算子的广义Carleson摄动及其应用
对于椭圆型实二阶发散型(可能是简并的,不一定是对称的)椭圆算子,我们在两个方向上推广了Carleson型微扰的概念。首先,除了经典的Carleson型微扰(我们称之为加性Carleson微扰)之外,我们引入了标量乘法和反对称Carleson微扰,它们都允许在边界处存在非平凡的差异。其次,我们考虑了广义上承认椭圆偏微分方程的域:我们以满足容量密度条件的单面NTA(又称均匀)域、单面弦弧域、具有低维Ahlfors-David规则边界的域和某些具有混合维边界的域为例;因此,我们的方法对椭圆算子的Carleson摄动理论提供了一个统一的观点。我们的证明没有引入锯齿域或外推方法。我们也给出了一些dahlberg - kenig - piphher算子在自由边界问题上的应用,并给出了椭圆测度中$A_{\infty}$的一个新的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信