{"title":"A Dynamic Model as a Tool for Design and Optimization of Propulsion Systems of Transport Means","authors":"G. Peruń","doi":"10.34768/amcs-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract Designing power transmission systems is a complex and often time-consuming problem. In this task, various computational tools make it possible to speed up the process and verify a great many different solutions before the final one is developed. It is widely possible today to conduct computer simulations of the operation of various devices before the first physical prototype is built. The article presents an example of a dynamic model of power transmission systems, which has been developed to support work aimed at designing new and optimizing existing systems of that type, as well as to help diagnose them by designing diagnostic algorithms sensitive to early stages of damage development. The paper also presents sample results of tests conducted with the model, used at the gear design stage. In the presented model, the main goal is to reproduce the phenomena occurring in gears as well as possible, using numerous experiments in this direction featured in the literature. Many already historical models present different ways of modeling, but they often made significant simplifications, required by the limitations of the nature of computational capabilities. Differences also result from the purpose of the models being developed, and the analysis of these different ways of doing things makes it possible to choose the most appropriate approach.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"21 1","pages":"183 - 195"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Designing power transmission systems is a complex and often time-consuming problem. In this task, various computational tools make it possible to speed up the process and verify a great many different solutions before the final one is developed. It is widely possible today to conduct computer simulations of the operation of various devices before the first physical prototype is built. The article presents an example of a dynamic model of power transmission systems, which has been developed to support work aimed at designing new and optimizing existing systems of that type, as well as to help diagnose them by designing diagnostic algorithms sensitive to early stages of damage development. The paper also presents sample results of tests conducted with the model, used at the gear design stage. In the presented model, the main goal is to reproduce the phenomena occurring in gears as well as possible, using numerous experiments in this direction featured in the literature. Many already historical models present different ways of modeling, but they often made significant simplifications, required by the limitations of the nature of computational capabilities. Differences also result from the purpose of the models being developed, and the analysis of these different ways of doing things makes it possible to choose the most appropriate approach.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.