{"title":"Analysis of chemical weathering trends across three compositional dimensions: applications to modern and ancient mafic-rock weathering profiles","authors":"M. Babechuk, C. Fedo","doi":"10.1139/cjes-2022-0053","DOIUrl":null,"url":null,"abstract":"Chemical weathering indices (one-dimensional/1D index values) and accompanying ternary plots (two-dimensional/2D compositional space) facilitate quantitative comparison of whole-rock and mineral major-element data, and empirical chemical trends with predicted weathering vectors. However, data analysis in ternary plots is restricted by poles grouping elements that are hosted in different minerals or that are influenced selectively by later alteration (e.g., diagenesis/metasomatism). Tetrahedral plots (three-dimensional/3D compositional space) offer enhanced analytical utility of major-element data by shifting elements across four poles and/or incorporating additional proxy elements. Tetrahedral space can better reveal combined effects on major-element compositions from independent mineralogical controls and post-depositional alteration via curvilinear trends that are otherwise simplified and linear in ternary space. This study focuses on mafic rock weathering and first reviews applications and limitations of the 1D mafic index of alteration (MIA) and index of lateritization/bauxitization (IOL/IOB) that integrate into molar Al2O3–CaO*–Na2O–K2O–(FeO(T)/Fe2O3(T))–MgO and SiO2–Al2O3–Fe2O3(T) ternary compositional space, respectively. Analysis in tetrahedral space is then demonstrated with Phanerozoic weathering profile and Precambrian paleosol data in two plots of the molar Al2O3–CaO*–Na2O–K2O–(FeO(T)/Fe2O3(T))–MgO system (A–CN–K–FM and AF–CN–K–M plots) and one plot of the molar Al2O3–CaO*–Na2O–K2O–(FeO(T)/Fe2O3(T))–MgO–SiO2 system (A–L–F–S plot). Common chemical weathering indices are integrated into these 3D tetrahedral spaces or onto some of their 2D ternary faces. However, the tetrahedral compositional space is a key to: (1) assessing integrative effects from labile element loss while accounting for the variable, redox-dependent behaviour of Fe, (2) better exposing, and correcting for, overprinting effects of diagenesis/metasomatism, and (3) tracking Si loss across all stages of chemical weathering.","PeriodicalId":9567,"journal":{"name":"Canadian Journal of Earth Sciences","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cjes-2022-0053","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Chemical weathering indices (one-dimensional/1D index values) and accompanying ternary plots (two-dimensional/2D compositional space) facilitate quantitative comparison of whole-rock and mineral major-element data, and empirical chemical trends with predicted weathering vectors. However, data analysis in ternary plots is restricted by poles grouping elements that are hosted in different minerals or that are influenced selectively by later alteration (e.g., diagenesis/metasomatism). Tetrahedral plots (three-dimensional/3D compositional space) offer enhanced analytical utility of major-element data by shifting elements across four poles and/or incorporating additional proxy elements. Tetrahedral space can better reveal combined effects on major-element compositions from independent mineralogical controls and post-depositional alteration via curvilinear trends that are otherwise simplified and linear in ternary space. This study focuses on mafic rock weathering and first reviews applications and limitations of the 1D mafic index of alteration (MIA) and index of lateritization/bauxitization (IOL/IOB) that integrate into molar Al2O3–CaO*–Na2O–K2O–(FeO(T)/Fe2O3(T))–MgO and SiO2–Al2O3–Fe2O3(T) ternary compositional space, respectively. Analysis in tetrahedral space is then demonstrated with Phanerozoic weathering profile and Precambrian paleosol data in two plots of the molar Al2O3–CaO*–Na2O–K2O–(FeO(T)/Fe2O3(T))–MgO system (A–CN–K–FM and AF–CN–K–M plots) and one plot of the molar Al2O3–CaO*–Na2O–K2O–(FeO(T)/Fe2O3(T))–MgO–SiO2 system (A–L–F–S plot). Common chemical weathering indices are integrated into these 3D tetrahedral spaces or onto some of their 2D ternary faces. However, the tetrahedral compositional space is a key to: (1) assessing integrative effects from labile element loss while accounting for the variable, redox-dependent behaviour of Fe, (2) better exposing, and correcting for, overprinting effects of diagenesis/metasomatism, and (3) tracking Si loss across all stages of chemical weathering.
期刊介绍:
The Canadian Journal of Earth Sciences reports current research in climate and environmental geoscience; geoarchaeology and forensic geoscience; geochronology and geochemistry; geophysics; GIS and geomatics; hydrology; mineralogy and petrology; mining and engineering geology; ore deposits and economic geology; paleontology, petroleum geology and basin analysis; physical geography and Quaternary geoscience; planetary geoscience; sedimentology and stratigraphy; soil sciences; and structural geology and tectonics. It also publishes special issues that focus on information and studies about a particular segment of earth sciences.